BibTex Citation Data :
@article{Reaktor61047, author = {Rizkiyah Jannah and Ratnawati Ratnawati and Sunaryo Sunaryo and I Widiasa}, title = {Performance of An Aerated Wastewater Stabilization Pond for the Treatment of Cultivation Wastewater of Pacific White Shrimp (Litopenaeus vannamei) Grow-out Ponds}, journal = {Reaktor}, volume = {23}, number = {3}, year = {2024}, keywords = {}, abstract = { Pacific white shrimp (Litopenaeus vannamei) is a major cultivated crustacean species whose aquaculture production has doubled in the last decade. The implementation of shrimp pond systems using closed or intensive methods is widely carried out. However, wastewater produced by intensive shrimp farming may cause environmental effects. This study is aimed to evaluate the feasibility of the aerated wastewater stabilization pond to treat the cultivation wastewater. The physicochemical parameters monitored were temperature, pH, salinity, ammonia, nitrite, nitrate and phosphate. In the case of this study, almost all physicochemical parameters of the water coming out of the aerated wastewater stabilization pond are suitable for use as input water for integrated multitrophic aquaculture (IMTA). Temperature, pH, salinity, nitrite, nitrate, and phosphate were 27.1°C to 32.2°C, 7.86 to 8.79, 30 ppt to 34 ppt, 0.003 mg/L to 0.068 mg/L, and 0.19 mg/L to 1.31 mg/L, respectively. Only ammonia concentration significantly fluctuated in the range of 0.44 mg/L to 12 mg/L. }, issn = {2407-5973}, pages = {108--115} doi = {10.14710/reaktor.23.3.105-115}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/61047} }
Refworks Citation Data :
Pacific white shrimp (Litopenaeus vannamei) is a major cultivated crustacean species whose aquaculture production has doubled in the last decade. The implementation of shrimp pond systems using closed or intensive methods is widely carried out. However, wastewater produced by intensive shrimp farming may cause environmental effects. This study is aimed to evaluate the feasibility of the aerated wastewater stabilization pond to treat the cultivation wastewater. The physicochemical parameters monitored were temperature, pH, salinity, ammonia, nitrite, nitrate and phosphate. In the case of this study, almost all physicochemical parameters of the water coming out of the aerated wastewater stabilization pond are suitable for use as input water for integrated multitrophic aquaculture (IMTA). Temperature, pH, salinity, nitrite, nitrate, and phosphate were 27.1°C to 32.2°C, 7.86 to 8.79, 30 ppt to 34 ppt, 0.003 mg/L to 0.068 mg/L, and 0.19 mg/L to 1.31 mg/L, respectively. Only ammonia concentration significantly fluctuated in the range of 0.44 mg/L to 12 mg/L.
Article Metrics:
Last update:
Last update: 2025-11-26 05:56:00
Reaktor provides immediate open access to its published articles under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. Authors retain copyright, without restrictions, merely granting the journal a non-exclusive license to publish their article and identify itself as its original publisher.
Whether as an author or a reader, you are free to download, adapt, share, upload to a social network or institutional repository, or redistribute articles for any other lawful purpose in any medium, provided you give appropriate credit to the original author(s) and Reaktor, link to the CC BY-SA license, indicate if changes were made, and redistribute any derivative work under the same license.
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University
View My Stats