skip to main content

ESTIMASI DAYA LISTRIK UNTUK PRODUKSI OKSIGEN OLEH KINCIR AIR SELAMA PERIODE “BLIND FEEDING” BUDIDAYA UDANG VANAME (Litopenaeus vannamei)

Abdul Wafi  -  Departemen Budidaya Perikanan, Fakultas Sains dan Teknologi, Universitas Ibrahimy, Situbondo, Jawa Timur, Indonesia
*Heri Ariadi orcid scopus publons  -  Pekalongan University, Indonesia

Citation Format:
Abstract

Sebanyak 15% biaya produksi budidaya udang digunakan untuk konsumsi energi listrik oleh penggunaan kincir air, selain itu penggunaan kincir air juga merupakan faktor kunci yang menentukan dalam keberhasilan budidaya udang. Tujuan dari penelitian ini adalah untuk mengetahui estimasi daya tenaga listrik yang dibutuhkan untuk produksi oksigen terlarut oleh penggunaan kincir air selama periode budidaya “Blind Feeding” udang vaname (L. vannamei). Metode penelitian yang digunakan adalah metode riset lapang dengan mengamati variabel parameter kualitas air (pH, suhu, Oksigen terlarut, salinitas), laju difusi oksigen pada kincir air, laju pertumbuhan udang, dan estimasi tingkat kebutuhan listrik untuk operasional kincir air yang dilakukan selama 30 hari awal masa budidaya intensif udang vaname. Hasil penelitian menunjukan kondisi parameter kualitas air selama masa budidaya cenderung stabil dan sesuai dengan kriteria baku mutu kualitas air untuk budidaya udang. Laju pertumbuhan udang harian rata-rata sebesar 1.21 gr/hari dan memiliki hubungan korelatif terhadap tingkat produksi oksigen oleh difusi kincir air dengan membentuk model persamaan Y = 4.769 + 0.344x. Sedangkan jumlah estimasi daya listrik yang dibutuhkan untuk mengoperasikan kincir air sepanjang periode blind feeding berkisar antara 0.97-1.07 kW yang berfluktuasi mengikuti efektifitas tingkat produksi oksigen di perairan tambak. Selama periode blind feeding budidaya udang intensif jumlah estimasi daya listrik yang dibutuhkan untuk mengoperasionalkan kincir air dengan kapasitas 2 HP dibutuhkan energi listrik antara 0.97-1.07 kW yang berfluktuasi secara osilatif sepanjang periode blind feeding budidaya udang vaname berlangsung.

 

15% of shrimp culture production cost is used for electricity consumption by paddle-wheels aerator operation, in addition, the use of paddle-wheel aerator is also a key determining factor in shrimp farming. The purpose of this study was to determine the estimated electric power required for dissolved oxygen production by the use of a paddle-wheel aerator during the "Blind Feeding" period of vaname shrimp (L. vannamei). The research method used with the field research method by observing the variable water quality parameters (pH, temperature, dissolved oxygen, salinity), oxygen diffusion rate in paddle-wheel aerators, shrimp growth rate, and estimation of the level of electricity demand for paddle-wheel aerator operations during the initial 30 days of intensive shrimp culture. The results showed that of water quality parameters condition during the cultivation period tended to be stable and in accordance with the water quality standard criteria for shrimp culture. The daily shrimp growth rate an average of 1.21 g/day and has a correlative relationship with the level of oxygen production by paddle-wheel aerators diffusion by forming the equation model Y = 4.769 + 0.344x. Meanwhile, the estimated amount of electric power needed to paddle-wheel aerators operate during the blind feeding period ranges from 0.97-1.07 kW which fluctuates following by oxygen production rate effectiveness in pond waters. During the blind feeding intensive shrimp farming periods, the estimated amount of electrical power require to operate of 2 HP paddle-wheel aerators capacity need electrical energy between 0.97-1.07 kW which fluctuates oscillatively throughout the blind feeding periods.

Fulltext View|Download
Keywords: blind feeding; kincir air; L. vannamei; udang vaname
Funding: -

Article Metrics:

  1. Aftab Uddin, A., Siddique, M.A.M., Sein, A., Dey, P.K., Rashed-Un-Nabi, M., Haque, M.A. (2020). First use of biofloc technology for Penaeus monodon culture in Bangladesh: Effects of stocking density on growth performance of shrimp, water quality and bacterial growth. Aquaculture Reports, 18, 100518. https://doi.org/10.1016/j.aqrep.2020.100518
  2. Ali, A.E., Salem, W.M., Younes, S.M., Kaid, M. (2020). Modeling climatic effect on physiochemical parameters and microorganisms of Stabilization Pond Performance. Heliyon, 6, e04005. https://doi.org/10.1016/j.heliyon.2020.e04005
  3. Anand, P.S.S., Balasubramanian, C.P., Christina, L., Kumar, S., Biswas, G., De, D., Ghoshal, T.K., Vijayan, K.K. (2019). Substrate based black tiger shrimp, Penaeus monodon culture: Stocking density, aeration and their effect on growth performance, water quality and periphyton development. Aquaculture, 507, 411-418. https://doi.org/10.1016/j.aquaculture.2019.04.031
  4. Ariadi, H., Mahmudi, M., Fadjar, M. (2019). Correlation between Density of Vibrio Bacteria with Oscillatoria sp. Abundance on Intensive Litopenaeus vannamei Shrimp Ponds. Research Journal of Life Science, 6(2), 114-129. doi: https://doi.org/10.21776/ub.rjls.2019.006.02.5
  5. Ariadi, H., Fadjar, M., Mahmudi, M., Supriatna. (2019). The relationships between water quality parameters and the growth rate of white shrimp (Litopenaeus vannamei) in intensive ponds. AACL Bioflux, 12(6), 2103-2116
  6. Ariadi, H., Wafi, A., Supriatna. (2020). Hubungan Kualitas Air Dengan Nilai FCR Pada Budidaya Intensif Udang Vanname (Litopenaeus vannamei). Samakia: Jurnal Ilmu Perikanan, 11(1), 44-50. doi : https://doi.org/10.35316/jsapi.v11i1.653
  7. Ariadi, H., Wafi, A., Mahmudi, M., Fadjar, M. (2020). Tingkat Transfer Oksigen Kincir Air Selama Periode Blind Feeding Budidaya Intensif Udang Putih (Litopenaeus vannamei). Journal of Fisheries and Marine Research, 4(1), 7-15. doi: http://dx.doi.org/10.21776/ub.jfmr.2020.004.01.2
  8. Ariadi, H., Wafi, A., Madusari, B.D. (2021). Dinamika Oksigen Terlarut (Studi Kasus Pada Budidaya Udang). Penerbit ADAB. Indramayu. 138 hlm.Ariadi, H., Wafi, A., Musa, M., Supriatna. (2021). Keterkaitan Hubungan Parameter Kualitas Air Pada Budidaya Intensif Udang Putih (Litopenaeus vannamei). Samakia : Jurnal Ilmu Perikanan, 12(1), 18-28
  9. Ariadi, H., Wafi, A., Supriatna., Musa, M. (2021). Tingkat Difusi Oksigen Selama Perode Blind Feeding Budidaya Intensif Udang Vaname (Litopenaeus vannamei). Rekayasa, 14(2), 152-158
  10. Boyd, C.E. (1998). Pond water aeration systems. Aquacultural Engineering, 18 , 9–40
  11. Budiardi, T., Batara, T., dan Wahjuningrum, D. (2005). Tingkat Konsumsi Oksigen Udang Vaname (Litopenaeus vannamei) Dan Model Pengelolaan Oksigen Pada Tambak Intensif. Jurnal Akuakultur Indonesia, 4(1), 89-96
  12. Cao, M., Rivas-Ruiz, P., Trapote, M.C., Vegas-Vilarurubia, T., Rull, V., Rosell-Mele, A. (2020). Seasonal effects of water temperature and dissolved oxygen on the isoGDGT proxy (TEX86) in a Mediterranean oligotrophic lake. Chemical Geology, 551, 119759. https://doi.org/10.1016/j.chemgeo.2020.119759
  13. Delgado, P.C., Avnimelech, Y., McNeil, R., Bratvold, D., Browdy, C.L., Sandifer, P. (2003). Physical, chemical and biological characteristics of distinctive regions in paddlewheel aerated shrimp ponds. Aquaculture, 217, 235-248
  14. Edhy, W.A., Azhary, K., Pribadi, J., Chaeruddin, M. (2010). Budidaya Udang Putih (Litopenaeus vannamei.Boone,1931). CV Mulia Indah . Jakarta. 194 hlm
  15. Fernandez-Rodriguez, M.J., Milstein, A., Jimenez-Rodriguez, A., Mazuelos, N., Medialdea, M., Serrano, L. (2018). Multivariate factor analysis reveals the key role of management in integrated multitrophic aquaculture of veta la Palma (Spain). Aquaculture, 495, 484-495. https://doi.org/10.1016/j.aquaculture.2018.06.032
  16. Fleckenstein, L.J., Tierney, T.W., Fsik, J.C., Ray, A.J. (2020). The effects of different solids and biological filters in intensive pacific white shrimp (Litopenaeus vannamei) production systems. Aquacultural Engineering, 91, 102120. https://doi.org/10.1016/j.aquaeng.2020.102120
  17. Ho, L., dan Goethals, P.L.M. (2020). Municipal wastewater treatment with pond technology: Historical review and future outlook. Ecological Engineering, 148, 105791. https://doi.org/10.1016/j.ecoleng.2020.105791
  18. Itano, T., Inagaki, T, Nakamura, C., Hashimoto, R., Negoro, N., Hyodo, J., Honda, S. (2019). Water circulation induced by mechanical aerators in a rectangular vessel for shrimp aquaculture. Aquacultural Engineering, 85, 106-113. https://doi.org/10.1016/j.aquaeng.2019.03.006
  19. Janeo, R.L., Corre Jr, V.L., dan Sakata, T. (2009). Water quality and phytoplankton stability in response to application frequency of bioaugmentation agent in shrimp ponds. Aquacultural Engineering, 40, 120-125. doi: 10.1016/j.aquaeng.2009.01.001
  20. Jayanthi, M., Balasubramaniam, A.A.K., Suryaprakash, S., Veerapandian, N., Ravisankar, T., Vijayan, K.K. (2021). Assessment of standard aeration efficiency of different aerators and its relation to the overall economics in shrimp culture. Aquacultural Engineering, 92, 102142. https://doi.org/10.1016/j.aquaeng.2020.102142
  21. Kazemzadeh, A., Elias, C., Tamer, M., Lohi, A., Ein-Mozaffari, F. (2020). Mass transfer in a single-use angled-shaft aerated stirred bioreactor applicable for animal cell culture. Chemical Engineering Science, 2019, 115606. https://doi.org/10.1016/j.ces.2020.115606
  22. Kumar, A., Moulick, S., dan Mal, B.C. (2010). Performance evaluation of propeller-aspirator-pump aerator. Aquacultural Engineering, 42, 70-74. doi: 10.1016/j.aquaeng.2009.12.001
  23. Kumar, A., Moulick, S., dan Mal, B.C. (2013). Selection of aerators for intensive aquacultural pond. Aquacultural Engineering, 56, 71-78. http://dx.doi.org/10.1016/j.aquaeng.2013.05.003
  24. Levintal, E., Dragila, M.I., Weisbrod, N. (2019). Impact of wind speed and soil permeability on aeration time in the upper vadose zone. Agricultural and Forest Meteorology, 269-270, 294-304. https://doi.org/10.1016/j.agrformet.2019.02.009
  25. Mai, T., Mai, C., Raby, A., Greaves, D.M. (2019). Aeration effects on water-structure impacts: Part 1. drop plate impacts. Ocean Engineering, 193, 106600. https://doi.org/10.1016/j.oceaneng.2019.05.035
  26. Peterson, E.L., dan Walker, M.B. (2002). Effect of speed on Taiwanese paddlewheel aeration. Aquacultural Engineering, 26, 129–147
  27. Rahman, A., Dabrowski, J., McCulloch, J. (2020). Dissolved oxygen prediction in prawn ponds from agroup of one step predictors. Information Processing In Agriculture 7, 307-317. https://doi.org/10.1016/j.inpa.2019.08.002
  28. Roy, S.M., Moulick, S., Mukherjee, C.K., Mal, B.C. (2015). Effect Of Rotational Speeds of Paddle Wheel Aerator on Aeration Cost. American Research Thoughts, 2, 3069-3087
  29. Suhendar, D.T., Zaidy, A.B., dan Sachoemar, S.I. (2020). Profil Oksigen Terlarut, Total Padatan Tersuspensi, Amonia,Nitrat, Fosfat Dan Suhu Pada Tambak Intensif Udang Vanamei. Jurnal Akuatek, 1(1), 1-11
  30. Tian, Y., Chen, G., Lu, H., Zhu, H., Ye, Y. (2019). Effects of shrimp pond effluents on stocks of organic carbon, nitrogen and phosphorus in soils of Kandelia obovata forests along Jiulong River Estuary. Marine Pollution Bulletin, 149, 110657. https://doi.org/10.1016/j.marpolbul.2019.110657
  31. Tien, N.N., Matsuhashi, R., Chau, V.T.T.B. (2019). A Sustainable Energy Model for Shrimp Farms in the Mekong Delta. Energy Procedia, 157, 926–938. doi: 10.1016/j.egypro.2018.11.259
  32. Ulaje, S.A., Lluch-Cota, S.E., Sicard, M.T., Ascencio, F., Cruz-Hernandez, P., Racotta, I.S., Rojo-Arreola, L. (2020). Litopenaeus vannamei oxygen consumption and HSP gene expression at cyclic conditions of hyperthermia and hypoxia. Journal of Thermal Biology, 92, 102666. https://doi.org/10.1016/j.jtherbio.2020.102666
  33. Vinatea, L., dan Carvalho, J.W. (2007). Influence of water salinity on the SOTR of paddlewheel and propeller-aspirator-pump aerators, its relation to the number of aerators per hectare and electricity costs. Aquacultural Engineering, 37, 73–78
  34. Wafi, A., Ariadi, H., Fadjar, M., Mahmudi, M., Supriatna. (2020). Model Simulasi Panen Parsial Pada Pengelolaan Budidaya Intensif Udang Vannamei (Litopenaeus vannamei). Samakia: Jurnal Ilmu Perikanan, 11(2) , 118-126. doi : https://doi.org/10.35316/jsapi.v11i2.928
  35. Yongphet, P., Ramaraj, R., Whangchai, N., Quaye, E.K., Wang, D., Dussadee, N. (2020). Modeling and implementing the use of aeration to increase water temperature and dissolved oxygen in greenhouse aquaculture cages. Aquacultural Engineering, 91, 102119. doi: https://doi.org/10.1016/j.aquaeng.2020.102119

Last update:

No citation recorded.

Last update: 2024-11-08 06:29:17

No citation recorded.