skip to main content


*Masagus Muhammad Prima Putra  -  Bachelor of Fish Product Technology, Department of Fisheries, Universitas Gadjah Mada, Jl. Flora Gedung A4, Bulaksumur Yogyakarta Indonesia 55281, Indonesia
Muhammad Yaafi Al-Hammam  -  Fish Product Technology, Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Indonesia
Giffarri Ahsan  -  Fish Product Technology, Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Indonesia
Klara Kharisma Bunga Chandra  -  Fish Product Technology, Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Indonesia
Indun Dewi Puspita  -  Fish Product Technology, Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Indonesia

Citation Format:

The toxicity caused by high histamine content produced by histamine-producing bacteria (HPB) during the fermentation of scombridae fish group based fermented fish products is still a problem that requires a solution. This study aims to explore the potential of secondary metabolites in the form of cell free supernatant (CFS) produced by lactic acid bacteria (LAB) as antibacterial agents against HPB. The LAB was isolated from the fermented fishery products named bekasan, cincalok and fish sauce using MRS-Agar and fermented on MRS-broth for 48 hours. CFS was collected by centrifugation at 15,000 x g for 15 minutes, followed by heating at 100oC for 3 minutes and pH neutralization with 0.1N NaOH. Antimicrobial activity of CFS then tested on HFB namely Morganella morganii TK7, Citrobacter freundii CK1, and Klebsiella sp. CK13.2 (collection of the Laboratory of Fisheries Product Quality and Safety, Department of Fisheries UGM) using the macrodilution method. Isolation of LAB from all three products successfully isolated 34 isolates. The results of the antibacterial activity showed that 4 isolates namely GMCN 1.12, GMBK 2.6, GMBK 2.7, dan GMKI 2.1 were able to inhibit HFB growth more than 70%. The highest activity was shown by GMBK 2.7 which inhibits 98% against Morganella morganii TK7, 99% against Citrobacter freundii CK1, and 84% against Klebsiella sp. CK13.2. The antimicrobial activity was reduced after proteolytic enzymes were added suggesting that the bioactive compound came from peptide-based substances like bacteriocin.

Fulltext View|Download
Keywords: antibacterial; lactic acid bacteria; histamine-producing bacteria; cell free supernatant

Article Metrics:

  1. Ababouch, L., M.E. Afila, S. Rhafiri and F. Busta. 1991. Identification of histamine-producing bacteria isolated from sardine (Sardina pilchardus) stored in ice and at ambient temperature (25oC). Food Microbiology 8:127–136. doi: 10.1016/0740-0020(91)90005-M
  2. Abanoz, H.S., and Buket, K. 2018. Antimicrobial Activity of a Bacteriocin Produced by Enterococcus faecalis KT11 against Some Pathogens and Antibiotic-Resistant Bacteria. Korean J. Food Sci. An. 38(5):1064-1079. doi: 10.5851/kosfa.2018.e40
  3. Abrams, D., J. Barbosa, H. Albano, J. Silva. P.A. Gibbs., and P. Teixeria. 2011. Characterization of bacPPK34 a bacteriocin produced by Pediococcus pentosaceus strain K34 isolated from “Alheira”. Food Control. 22: 940-946. doi: 10.1016/j.foodcont.2010.11.029
  4. Azevedo, P.O.S., C.M.N. Mendonça, A.C.R. Moreno, A.V.I. Bueno, S.R.Y. de Almeida, L. Seibert, A. Converti, I. Watanabe, M. Gierus and R.P. de Souza Oliveira. 2020. Antibacterial and antifungal activity of crude and freeze‑dried bacteriocin‑like inhibitory substance produced by Pediococcus pentosaceus. Scientific Reports 10(12291): 1-14. doi: 10.1038/s41598-020-68922-2
  5. Ban, Y., and Le L.G. 2021. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health: a review. Journal of Animal Science and Biotechnology 12(109): 1-22. doi: 10.1186/s40104-021-00630-x
  6. Bayona, L.G. and L.E. Comstock. 2018. Bacterial antagonism in host-associated microbial communities. Science 361: 2456-2460. doi: 10.1126/science.aat2456
  7. Corry, J. E. L., G. D. W. Curtis., and R. M. Baird. 2003. de Man, Rogosa and Sharpe (MRS) agar. Handbook of Culture Media for Food Microbiology. Elsevier Science. 37: 511-513. doi: 10.1016/S0079-6352(03)80066-8
  8. Farkas, A., Pap, B., Kondorosi, É. and Maróti, G. 2018. Antimicrobial Activity of NCR Plant Peptides Strongly Depends on the Test Assays. Front. Microbiol. 9:2600. doi: 10.3389/fmicb.2018.02600
  9. Gautam, N. and N. Sharma. 2009. Bacteriocin: safest approach to preserve food products. Indian Journal of Microbiology 49(3): 204–211. doi: 10.1007/s12088-009-0048-3
  10. Goh, H. F., and Phillip, K. 2015. Purification and Characterization of Bacteriocin Produced by Weissella confusa A3. Journal PONE. 10(10): 1-17. doi: 10.1371/journal.pone.0140434
  11. Hefzy, E.M., M.A.F. Khalil, A.A.I. Amin, H.M. Ashour and Y.F. Abdelaliem. 2021. Bacteriocin-Like Inhibitory Substances from Probiotics as Therapeutic Agents for Candida vulvovaginitis. Antibiotics 10(306): 1-13. doi: 10.3390/antibiotics10030306
  12. Heredia-Castro, P.Y., J.I. Méndez-Romero, A. Hernández-Mendoza, E. Acedo-Félix, A.F. González-Córdova, and B. Vallejo-Cordoba. 2015. Antimicrobial activity and partial characterization of bacteriocinlike inhibitory substances produced by Lactobacillus spp. isolated from artisanal Mexican cheese. J. Dairy Sci. 98: 8285–8293. doi: 10.3168/jds.2015-10104
  13. Heruwati, E. S., S. T. Sukarto, dan S. U. Syah. 2004. Perkembangan Histamin Selama Proses Fermentasi Peda dari Ikan Kembung (Rastrelliger negtecfus). Jurnal Penelitian Perikanan indonesia Volume 10 Nomor 3 Tahun 2004. doi: 10.15578/jpbkp.v10i3.371
  14. Kusmawarti A, Rachman F, dan Haryati S. 2014. Eksplorasi bakteriosin dari bakteri asam laktat asal rusip bangka dan kalimantan. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan. 9: 29-40. doi: 10.15578/jpbkp.v9i1.97
  15. Josten, H.M.L. and M. Nunez. 1996. Prevention of Histamine Formation in Cheese by Bacteriocin-Producing Lactic Acid Bacteria. Appl. Envir. Micro. 62 (4) :1178-1181. doi: 10.1128/AEM.62.4.1178-1181.1996
  16. Lim, E.S. 2016. Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot. Fisheries and Aquatic Sciences 19(42): 1-10. doi: 10.1186/s41240-016-0040-x
  17. Mariam, S.H., Zegeye, N., Tariku, T., Andargie, E., Endalafer, N. and Aseffa, A. 2014. Potential of cell-free supernatants from cultures of selected lactic acid bacteria and yeast obtained from local fermented foods as inhibitors of Listeria monocytogenes, Salmonella spp. and Staphylococcus aureus. BMC research notes, 7(1): 1-9. doi: 10.1186/1756-0500-7-606
  18. Marui, J., S. Phouphasouk, Y. Giavang, Y. Yialee, and S. Boulom. 2021. Relationship between Salinity and Histamine Accumulation in Padaek, a Salt-Fermented Freshwater Fish Paste from Laos. Journal of Food Protection, (84) 3: 429–436. doi: 10.4315/JFP-20-272
  19. Mooraki N. and Sedaghati, M. 2019. Reduction of biogenic amines in fermented fish sauces by using Lactic acid bacteria. Journal of Survey in Fisheries Sciences 5(2): 99-110. doi: 10.18331/SFS2019.5.2.10
  20. Naila, A., Flint, S., Fletcher, G. C., Bremer, P. J., and Meerdink, G. 2011. Biogenic amines and potential histamine – forming bacteria in rihaakuru (a cooked fish paste). Food Chem. 128, 479–484
  21. Nurhamidah, A., Warsidah., dan N. Idiawati. 2019. Isolasi dan Karakterisasi Bakteri Asam Laktat (BAL) dari Ale-ale dan Cincalok. Jurnal Laut Khatulistiwa. 2(3): 85-90. doi: 10.1016/j.foodchem.2011.03.057
  22. O’Bryan, C.A., Crandall, P.G., Ricke, S.C. and Ndahetuye, J.B., 2015. Lactic acid bacteria (LAB) as antimicrobials in food products: types and mechanisms of action. Handbook of Natural Antimicrobials for Food Safety and Quality, 6: 117-29. doi: 10.1016/B978-1-78242-034-7.00007-4
  23. Rodríguez L.G.R., F. Mohamed, J. Bleckwedel, R. Medina, L.D. Vuyst, E.M. Hebert and F. Mozzi. 2019. Diversity and Functional Properties of Lactic Acid Bacteria Isolated from Wild Fruits and Flowers Present in Northern Argentina Frontiers in Microbiology 10(1091): 1-26. doi: 10.3389/fmicb.2019.01091
  24. Sidek, N.K.M., M. Halim, J.S. Tan, S. Abbasiliasi, S. Mustafa, and A.B. Ariff. 2018. Stability of Bacteriocin-Like Inhibitory Substance (BLIS) Produced by Pediococcus acidilactici kp10 at Different Extreme Conditions. BioMed Research International 2018: 1-11. doi: 10.1155/2018/5973484
  25. Simons, A., K. Alhanout, and R.E. Duval. 2020. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 8(639): 1-31. doi: 10.3390/microorganisms8050639
  26. Tsai, Y. H., Lin, C. Y., Chien, L. T., Lee, T. M., Wei, C. I., and Hwang, D. F. 2006. Histamine contents of fermented fish products in Taiwan and isolation of histamine forming bacteria. Food Chem. 98, 64–70. doi: 10.1016/j.foodchem.2005.04.036
  27. Ueda, K. & T. Beppu. 2017. Antibiotics in microbial coculture. Journal of Antibiotics 70: 361-365. doi: 10.1038/ja.2016.127
  28. Udomsil, N., Sureelak R., Sombon T., Jirawat Y. 2010. Proteinase-producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds. International Journal of Food Microbiology 141:189-194. doi: 10.1016/j.ijfoodmicro.2010.05.016
  29. Wakinaka, T., Satomi., Yuya T., Jun W., Yoshinobu M., Yuichiro T., Yuki S. 2019. Isolation of halophilic lactic acid bacteria possessing aspartate decarboxylase and application to fish sauce fermentation starter. International Journal of Food Microbiology 292:137-143. doi: 10.1016/j.ijfoodmicro.2018.12.013

Last update:

No citation recorded.

Last update: 2023-09-26 13:47:51

No citation recorded.