skip to main content

KANDUNGAN GIZI DAN ANTIOKSIDAN HIDROLISAT PROTEIN LIMBAH IKAN CAKALANG HASIL OPTIMASI pH, SUHU DAN LAMA HIDROLISIS

Dwi Yanuar Budi Prasetyo  -  Program Studi Doktor Manajemen Sumber Daya Perairan, Fakultas Perikanan dan Ilmu Kelautan Universitas Diponegoro, Jl. Prof. Jacub Rais, Tembalang, Semarang 50275, Indonesia, Indonesia
*Tri Winarni Agustini  -  Departemen Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Jl. Prof. Jacub Rais, Tembalang, Semarang 50275, Indonesia, Jl. Prof. Jacub Rais, Tembalang, Semarang 50275, Indonesia, Indonesia
Gemala Anjani  -  Departemen Ilmu Gizi, Fakultas Kedokteran, Universitas Diponegoro, Tembalang, Semarang 50275, Indonesia, Indonesia
Putut Har Riyadi  -  Departemen Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Jl. Prof. Jacub Rais, Tembalang, Semarang 50275, Indonesia, Jl. Prof. Jacub Rais, Tembalang, Semarang 50275, Indonesia, Indonesia

Citation Format:
Abstract

Limbah ikan cakalang seperti kerangka dan hasil trimming mengandung senyawa bioaktif sehingga mempunyai potensi untuk diolah menjadi produk pangan fungsional, salah satunya hidrolisat protein ikan (HPI). Penelitian ini bertujuan untuk mendeskripsikan kandungan gizi dan aktivitas antioksidan dari HPI limbah ikan cakalang. Metode pembuatan HPI menggunakan enzim papain (5%) pada pH 6,4, suhu 61°C, dan lama hidrolisis 228 menit. Penentuan derajat hidrolisat menggunakan nitrogen yang terlarut TCA, kadar air dan abu secara gravimetri, kadar protein secara Kjeldahl, kadar lemak menggunakan Soxhlet. Analisis profil asam amino menggunakan HPLC, serta analisis aktivitas antioksidan menggunakan radical scavenging activity (RSA) dan ferric reducing antioxidant power (FRAP). Nilai derajat hidrolisat produk sebesar 75,43%±0,13, kadar air 14,64±0,19%, protein 30,06±0,002%, lemak 9,62±0,74%, dan abu 7,46±0,83%. Asam amino yang dominan adalah histidin 6,47±0,02, leusin 1,08±0,00, lisin 1,07±0,00, asam glutamat 2,60±0,01, glisin 2,39±0,01, alanin 1,44±0,00, arginin 1,34±0,00, dan asam aspartat 1,18±0,00. Nilai aktivitas antioksidan untuk RSA sebesar 32,34±0,43% dan FRAP sebesar 1,94±0,21 µMol TE/g protein. Hidrolisat yang dihasilkan mempunyai kadar protein 30,06%, histidin 6,47%, asam glutamat 2,60%, glisina 2,39%. Hidrolisat yang dihasilkan dapat dijadikan sebagai bahan tambahan pangan dengan nilai histidina yang dominan. Potensi antioksidan yang dihasilkan tergolong rendah, sehingga perlu dilakukan penelitian lanjutan secara mendalam tentang pengayaan formulasi untuk mencapai kebutuhan gizi yang lengkap serta fungsi biologis lainnya.

Fulltext View|Download
Keywords: Antioksidan; Asam amino; Hidrolisat Protein Ikan; Limbah Ikan Cakalang: Proksimat

Article Metrics:

  1. Agustin, V., Putra, M.M.P., Husni A. (2023). Impact of enzymatic hydrolysis on antioxidant activity of snakehead fish (Channa striata) head protein hydrolysate. Jurnal Ilmiah Perikanan dan Kelautan, 15(1). 44-56. https://doi.org/10.20473/jipk.v15il.38391
  2. Al-Hmoud, H.A., Ibrahim, N.E., El-Hallous, E.I. (2014). Surfactants solubility, concentration and the other formulations effects on the drug release rate from a controlled-release matrix. African journal of pharmacy and pharmacology, 8(13), 364-371. https://doi.org/10.5897/AJPP2013
  3. Aluko R.E. (2018). Food protein-derived peptides : Production, isolation, and purification. https://doi.org/10.1016/B978-0-08-100722-8.00016-4
  4. Alvares, T.,S., Conte-Junior, C.A., Pierucci, A.P., Viera de Oliviera, V., Cordeiro, E.M. (2018). Acute effect of fish protein hydrolysate supplementation on vascular function in healty individuals. Journal of Functional Foods. 46. 250-255. https://doi.org/10.1016/j.jff.2018.04.066
  5. [AOAC] Association of Official Analytical Chemist. (2005). Official Method of Analysis of the Association of Official Analytical Chemist. Arlington : The Association of Official Analytical Chemist Inc
  6. Bashir, K.M.I., Park, Y.J., An, J.H., Choi, S.J., Kim, J.H., Baek, M.K., Kim, A., Sohn, J.H., Choi, J.S., (2017). Antioxidant properties of Scomber japonicus hydrolysates prepared by enzymatic hydrolysis. J. Aquat. Food. Prod. Technol. 22(1), 107–121. https://doi.org/10.1080/10498850.2017.1407013
  7. Batish, I., Ovissipour, R., Xu, Y., Galanopoulos, M., Sismour, E., Rafeeq, S., Miyai, C., Brits, D., Valencia, P. (2020). Effects of enzymatic hydrolysis on the functional properties, antioxidant activity and protein structure of black soldier fly (Hermetia illucens) protein. Insects. https://doi.org/10.3390/insects11120876
  8. Benjakul, S., Yarnpakdee, S., Senphan, T., Halldorsdottir, S. M., Kristinsson, H. G. (2014). Fish Protein Hydrolysates: Production, Bioactivities, and Applications. In H. G. Kristinsson (Ed.), Antioxidants and Functional Components in Aquatic Foods (pp. 237–281). Chichester, UK: John Wiley & Sons Ltd
  9. Cerretani, L. and Bendini, A. 2010. Chapter 67 – Rapid assays to evaluate the antioxidant capacity of phenols in virgin olive oil. Olives and Olive Oil in Health and Disease Prevention. 625-635. https://doi.org/10.1016/B978-0-12-374420-3.00067-X
  10. Cha, J.W., Yoon, I.S., Lee, G.W., Kang, S.I., Park, S.Y., Kim, J.S., Heu, M.S., (2020). Food functionalities and bioactivities of protein isolates recovered from skipjack tuna roe by isoelectric solubilization and precipitation. Food Science & Nutrition, 8(4), 1874-1887. https://doi.org/10.1002/fsn3.1470
  11. Chalamaiah, M., Hemalatha, R., Jyothirmayi, T., Diwan, P.V., Bhaskarachary, K., Vajreswari, A., Kumar, R.R., Kumar, B.D. (2015). Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg. Nutrition, 31, 388-398. https://doi.org/10.1016/j.nut.2014.08.006
  12. Chasanah, E., Susilowati, R., Yuwono, P., Zilda, D.S., Fawzya, Y.N. (2019). Amino acid profile of biologically processed fish protein hydrolysate (FPH) using local enzyme to combat stunting. IOP Conf. Series: Earth and Environmental Science, 278, 012013. https://doi.org/10.1088/1755-1315/278/1/012013
  13. Chi, C.F., Hu, F.Y., Wang, B., Li, Z.R., Luo, H.Y. (2015). Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysate from skipjack tuna (Katsuwonus pelamis) dark muscle. Marine Drugs, 13, 2580-2601. https://doi.org/10.3390/md13052580
  14. Cotabarren, J., Mabel, R.A., Tellecheaa, M., García-Pardoc, J., Lorenzo, R.J., David, O.W., Graciela, P.M. (2019). Adding value to the chia (Salvia hispanica L.) expeller: Production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with Papain. Food Chemistry, 274, 848–856. https://doi.org/10.1016/j.foodchem.2018.09.061
  15. Desai, A.S., Brennan, M., Gangan, S.S., Brennan, C. (2022). Chapter Seven – Utilization of fish waste as a value-added ingredient: Sources and bioactive properties of fish protein hydrolysate. Sustainable Fish Production and Processing. https://doi.org/10.1016/b978-0-12-824296-4.00004-9
  16. Dinel, A.L., Lucas, C., Le Faouder, J., Bouvret, E., Pallet, V., Laye, S., Joffre, C. (2021). Supplementation with low molecular weight peptides from fish protein hydrolysate reduces acute mild stress-induced corticosterone secretion and modulates stress responsive gene expresion in mice. Journal of Functional Foods, 76, 104292. https://doi.org/10.1016/j.jff.2020.104292
  17. Fitriadi, R., Soedibya P.H.T., Palupi, M., Riviani., Sutanto., Riady, R.M., Nurhafid, M. (2023). Penerapan Tekologi Zero Waste Concept pada Pengolahan Ikan Tuna (Thunnus) di UKM Sari Desa Adisara, Kecamatan Jatilawang, Kabupaten Banyumas. Artha Imperium. Vo. 1. No. 1. 30-39. E-ISSN: 3032-2944, P-ISSN 3034-6281
  18. Garofalo, S.F., Cavallini, N., Demichelis, F., Savorani, F., Mancini, G., Fino, D., Tommasi, T. (2023). From tuna viscera to added-value products: A circular approach for fish-waste recovery by green enzymatic hydrolysis. Food and Bioproducts Processing, 137, 155-167. https://doi.org/10.1016/j.fbp.2022.11.006
  19. Gilman, E., Suuronen, P., Chaloupka, M. (2017). Discards in global tuna fisheries. Marine Ecology Progress Series, 582, 231-252. https://doi.org/10.3354/meps12340
  20. Gokoglu, N. (2023). Chapter 6 – Value addition to seafood processing waste by usng enzymes, Editor(s): Mohammed Kuddus, Pramod Ramteke. Value-Addition in Agri-food Industry Waste Through Enzyme Technology, Academic Press. 95-106. ISBN: 9780323899284. https://doi.org/10.1016/B978-0-323-89928-4.00010-9
  21. Grasso, F., Martínez, M.M.A., Turrini, F., Méndez Paz, D., Vázquez Sobrado, R., Orlandi, V., Jenssen, M., Lian, K., Rombi, J., Tiso, M., et al. (2024). Antioxidant marine hydrolysates isolated from tuna mixed byproducts: An example of fishery side streams upcycling. Antioxidants, 13, 1011. https://doi.org/10.3390/antiox13081011
  22. Han, J.R., Tang, Y., Li, Y., Shang, W.H., Yan, J.N., Du, Y., Wu, H.T., Zhu, B.W., Xiong, Y.L. (2019). Physiochemical properties and functional characteristic of protein isolates from scallop (Patinopecten yessoensis) gonad. Journal of Food Science, 84 (5), 1023-1034. https://doi.org/10.1111/1750-3841.14598
  23. Hema, G.S., Joshy, C.G., Shyni, K., Chatterjee, N.S., Ninan, G., Mathew, S., (2017). Optimization of process parameters for the production of collagen peptides from fish skin (Epinephelus malabaricus) using response surface methodology and its characterization. J. Food Sci. Technol, 54(2), 488–496. https://doi.org/10.1007/s13197-017-2490-2
  24. Hoyle, N.T. & Merrit, J.H. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59 (1), 76 – 79
  25. Idowu, A.T., Benjakul, S., Sinthusamran S., Sookchoo, P. Kishimura, H. (2018). Protein hydrolysate from salmon frames: Production, characteristic and oxidative activity. Journal Food Biochemistry, 2018:e12734. https://doi.org/10.1111/jfbc.12734
  26. Jalili, S.H., Etemadian, Y., Alboofetileh, M., Moradi, Y. (2022). Gelatine extraction from skipjack tuna (Katsuwonus pelamis) head bones by acid-hydrolysis method and its physicochemical and functional characterizations. Aquatic Food Studies, 2(1). https://doi.org/10.4194/afs83
  27. Jeerakul, C., Kitsanayangyong, L., Mookdasanit, J., Klaypradit, W., Tepwong, P. (2022). Functional properties and bioactivities of protein powder prepared from skipjack tuna (Katsuwonus pelamis) liver using the pH shift process. Polish Journal of Food and Nutrition Science, 72(4), 347-359. https://doi.org/10.31883/pjfns/155225
  28. Joy, J.M., Maruth, P., Paul, P.T., Rose, K.V.S., Akshay, P., Jacob, M.R., Dara, P.K., Mathew, S., Anandan, R. (2023). Characterization and evaluation of antioxidant properties of skipjack (Katsuwonus pelamis) tuna skin gelatine hydrolysate. International Journal of Zoology and Applied biosciences, 8(4), 21-27. https://doi.org/10.55126/ijzab.2023.v08.i04.004
  29. Kementerian Kelautan dan Perikanan. (2024). Data Produksi Perikanan Tangkap. https://portaldata.kkp.go.id/datainsight/produksi-ikan-tangkap diakses pada 3 Mei 2025
  30. Klomklao, S. & Benjakul, S. (2016). Utilization of tuna processing by-products: Protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera. Journal of food Processing and Preservation. https://doi.org/10.1111/jfpp.12970
  31. Korkmaz, K & Tokur, B. (2022). Optimization of hydrolysis conditions for the production of protein hydrolysates from fish waste using response surface methodology. Food Bioscience. https://doi.org/10.1016/j.fbio.2021.101312
  32. Krasae, K., Worawattanamateekul, W., Hinsui, J. (2023). Effects of peptide fractions and amino acids on antioxidant properties of autolyzed tuna viscera protein hydrolysate. Food Research, 7(5), 156-163. https://doi.org/10.26656/fr.2017.7(5).270
  33. Laishram, M., Desai, A.S., Pathan, D.I., Pawase, A.S., Wasave, S.M. (2023). Functional properties and proximate analysis of fish waste protein hydrolysate processed using enzymes. Current Research in Nutrition and Food Science, 11(2), 655-665. https://doi.org/10.12944/crnfsj.11.2.16
  34. Li, W., Liu, Y., Jiang, W., Yan, X. (2019). Proximate composition and nutritional profile of rainbow trout (Oncorhynchus mykiss) heads and skipjack tuna (Katsuwonus pelamis) heads. Molecules, 24, 3189. https://doi.org/10.3390/molecules24173189
  35. Liu, J., Lyu, F., Zhou, X., Wang, B., Wang, B., Wang, X., Ding, Y. (2015). Preparation of skipjack tuna (Katsuwonus pelamis) protein hydrolysate using combined controlled enzymatic hydrolysis and glycation for improved solubility and emulsifying properties. Journal of Food and Nutrition Research 3(7) 471-477. https://doi.org/10.12691/jfnr-3-7-9
  36. Liu, S., Li, X., Zhou, X., Zhang, X., Ding, Y. (2014). Comparative study of basic characteristic of ordinary and dark muscle in skipjack tuna (Katsuwonus pelamis). Food Science Biotechology, 23(5), 1397-1404. https://doi.org/10.1007/s10068-014-019-4
  37. Lopez, M.J., & Mohiuddin, S.S., (2022). Biochemistry, Essential Amino Acids. StatPearls [Internet]. StatPearls Publishing,, Treasure Island (FL). < https://www.ncbi.nlm.nih.gov/books/NBK557845/#_NBK557845_pubdet_>
  38. Martínez-Alvarez, O., Chamorro, S., Brenes, A. (2015). Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review, Food Research International (2015), http://dx.doi.org/10.1016/j.foodres.2015.04.005
  39. Mohanty, U., Majumdar, R.K., Mohanty, B., Mehta, N. K., Parhi, J. (2021). Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysates from visceral waste of Labeo rohita. Journal of Food Science and Technology, 58(11), 4349–4358
  40. Mongkonkamthorn, N., Maila, Y., Yarnpakdee, S., Makkhun, S., Regenstein, J.M., Wangtueai, S. (2020). Production of protein hydrolysate containing antioxidant and angiotensin-i-converting enzyme (ACE) inhibitory activities from tuna (Katsuwonus pelamis) blood. Processes, 8, 1518. https://doi.org/10.3390/pr8111518
  41. Morales-Medina, R., Tamm, F., Guadix, A.M., Drusch, S. (2016). Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food Chemistry, 194, 1208-1216. https://doi.org/10.1016/j.foodchem.2015.08.122
  42. Nikoo, M., Regenstein, J.M., Yasemi, M. (2023). Protein hydrolysates from fishery processing by-products: production, characteristics, food applications, and challenges. Review. Foods, 12, 4470. https://doi.org/10.3390/foods12244470
  43. Nugraheni, T.S., Setiawan, I., Putri, A.A., Sukmawati, A.W., Khasanah, L.N., Nisa, L.K., Putri, L.N.H., Wulandari, S.K., Riswana, S.A. (2024). Tinjauan artikel: Macam-macam metode pengujian aktivitas antioksidan. Jurnal Farmasi (Journal of Pharmacy), 13(1), 39-50
  44. Nurjanah., Suseno, S.H., Hidayat, T., Paramudhita, P.S., Ekawati, Y., Arifianto, T.B. (2015). Changes in nutritional composition of skipjack (Katsuwonus pelamis) due to frying process. International Food research Journal, 22(5), 2093-2102
  45. Nuryanto, Chasanah, E., Afifah, D.N., Sulchan, M., Martosuyono, P., Ishan, K. (2021). The effect of hydrolysate on amino acid levels in nile tilapia (Oreochromis niloticus). Food Research 5(Suppl. 3), 85-89. https://doi.org/10.26656/fr.2017.5(S3).003
  46. Özyurt, G., & Özkutuk, A.S., (2019). Advances in discard and by-product processing. https://doi.org/10.1201/9780429327551-16
  47. Prasetyo, D.Y.B., Agustini T.W., Anjani G., Riyadi P.H. (2024). Functional properties of protein hydrolysates from Skipjack Tuna by-products using response surface methodology. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 19(3), https://doi.org/10.15578/squalen.929
  48. Prihanto, A.A, Nurdiani, R., Bagus, A.D. (2019). Production and characteristics of fish protein hydrolysate from parrotfish (Chlorurus sordidus) head. PeerJ. 7:e8297. https://doi.org/10.7717/peerj.8297
  49. Qian, B., Zhao, X., Yang, Y., Tian, C. (2020). Antioxidant and anti-inflamatory peptide fraction from oyster soft tissue by enzymatic hydrolysis. Food Science and Nutrition. Vol.8 Issue 7. 3947-3956. https://doi.org/10.1002/fsn3.1710
  50. Ramakrishnan, S.R., Jeong, C.R., Park, J.W., Cho, S.S., Kim, S.J. (2023). A review on the processing of functional proteins or peptides derived from fish by-products and their industrial applications. Heliyon, 9. https://doi.org/10.1016/j.heliyon.2023.e14188
  51. Riyadi, P.H., Susanto, E., Anggo, A.D., Rifai, M., Prasetyo, D.Y.B. (2022). Amino acids profile of hydrolysate protein from nonshelled small crab (Portunus pelagicus) waste. ARPN journal of engineering and applied science, 17(7), 751-758
  52. Saiwong, S., Autsavapromporn, N., Siriwoharn, T., Techapun, C., Wangtueai, S. (2023) Enzymatic hydrolysis optimization for preparation of sea cucumber (Holothuria scabra) hydrolysate with an antiproliferative effect on the HepG2 liver cancer cell line and antioxidant properties. Int. J. Mol. Sci, 24, 9491. https://doi.org/10.3390/ijms24119491
  53. Sila, A., & Bougatef, A. (2016). Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review. Journal of Functional Foods, 21, 10–26. https://doi.org/10.1016/j.jff.2015.11.007
  54. Sugiyono, S. (2019). Metode penelitian kuantitatif kualitatif dan R&D. (pp.1-444). Alfabeta Bandung
  55. Sumandiarsa, I.K., Siregar, R.R., Dewi, KAS. (2020). Pengaruh metode pemasakan terhadap nilai sensori dan profil asam amino cakalang (Katsuwonus pelamis) masak. Jurnal Kelautan dan Perikanan Terapan, 3(2), 51-57
  56. Taheri, A. & Anahita, B.G. (2019). Antioxidant and ACE inhibitory activities of kawaka (Euthynnus affinis) protein hydrolysate produced by skipjack tuna pepsin. Journal of Aquatic Food Product Technology. https://doi.org/10.1080/10498850.2019.1707924
  57. Tessema, M, Gunaratna, N.S, Brouwer, I.D, Donato, K., Cohen, J.L, McConnell M, et al. (2018). Associations among high-quality protein and energy intake, serum transthyretin, serum amino acids and linear growth of children in Ethiopia. Nutrients, 10(11), 1776
  58. Vazquez, J.A., Pedreira, A., Duran, S., Cabanelas, D., Souto-Montero, P., Martinez, P., Mulet, M., Perez-Martin, R.I., Valcarcel, J. (2022). Biorefinery for tuna wastes: Production of protein hydrolysate, high-quality oils, minerals and bacterial peptones. Journal of Cleaner Production, 357, 131909. https://doi.org/10.1016/j.jclepro.2022.131909
  59. Villamil, O., Vaquiro, H., Solanilla, J.F. (2017). Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry, 224, 160-171. http://dx.doi.org/10.1016/j.foodchem.2016.12.057
  60. Wang, J., Wang, Y.M., Li, L.Y., Chi, C.F., Wang, B. (2022). Twelve antioxidants peptides from protein hydrolysate of skipjack Tuna (Katsuwonus pelamis) roe prepared by flavourzyme : Purification, sequence identification, and activity evaluation. Frontiers in Nutrition, 8, 813780. http://dx.doi.org/10.3389/fnut.2021.813780
  61. Weininger, U. (2019). Chapter Three - Optimal isotope labelling of aromatic amio acid side chains for NMR studies of protein dynamics. Methods in Enzymology. Vol. 614. 67-86. https://doi.org/10.1016/bs.mie.2018.08.028
  62. WHO/ FAO/ UNU. (2007). Protein and amino acid requirements in human nutrition. Food and Agriculture Organization of the United Nations. World Health Organization and United Nations University. Geneva. Switzerland
  63. Wong, F.C., Xiao, J., Wang, S., Ee, K.Y., Chai, T.T. (2020). Advances on the antioxidant peptides from edible plants sources. Trends Food Science and Technology, 99, 44-57. https://doi.org/10.1016/j.tifs.2020.02.012
  64. Yang, X.R., Zhao, Y.Q., Qiu, Y.T., Chi, C.F., Wang, B. (2019). Preparation and characterization of gelatin and antioxidant peptides from Gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) bone stimulated by in vitro gastrointestinal digestion. Marine Drgus, 17, 78. http://dx.doi.org/10.3390/md17020078
  65. Yang, J., Huang, J., Dong, X., Zhang, Y., Zhou, X., Huang, M., Zhou, G. (2020). Purification and identification of antioxidant peptides from duck plasma proteins. Food Chem, 319, 126534. https://doi.org/10.1016/j.foodchem.2020.126534
  66. Yathisha, U.G., Vaidya, S., Sheshappa, M.B. (2022). Functional properties of protein hydrolyzate from ribbon fish (Lepturacanthus savala) as prepared by enzymatic hydrolysis. International Journal of Food Properties. https://doi.org/10.1080/10942912.2022.2027964
  67. Ye, M., Wang, Z., Yan, X., Zeng, Z., Peng, T., Xia, J., Zhao, J., Wang, W., Gong, D., & Yu, P. (2024). Effects of Drying Methods on the Physicochemical and Functional Properties of Cinnamomum camphora Seed Kernel Protein Isolate. Foods, 13(6), 968. https://doi.org/10.3390/foods13060968
  68. Yusuf, M., Legowo, A.M., Albaarri, A.N., Darmanto, Y.S., Agustini, T.W., Setyastuti A.I. (2018). Mapping performance of the fishery industries innovation : A survey in the North Coast of Java. IOP Conference Series: Earth and Environmental Science, 102. https://doi.org/10.1088/1755-1315/102/1/012083
  69. Zhang, L., Zhao, G.X., Zhao, Y.Q., Qiu, Y.T., Chi, C.F., Wang B. (2019). Identification and active evaluation of antioxidant peptides from protein hydrolysates of skipjack tuna (Katsuwonus pelamis) head. Antioxidants, 8, 318. https://doi.org/10.3390/antiox8080318
  70. Zhang, S.Y., Zhao, Y.Q., Wang, Y.M., Yang, X.R., Chi, C.F., Wang, B. (2022). Gelatins and antioxidant peptide from skipjack tuna (Katsuwonus pelamis) skins: Purification, characterization, and cytoprotection on ultraviolet-A injured human skin fibroblast. Food Biosceince, 50, 102138. https://doi.org/10.1016/j.fbio.2022.102138
  71. Zhu, Y., Lao, F., Pan, X., Wu, J. (2022). Review: Food protein-derived antioxidant peptides: molecular mechanism, Stability and Bioavailability. Biomolecules. 12. 1622. https://doi.org/10.3390/biom12111622

Last update:

No citation recorded.

Last update: 2025-12-20 12:15:48

No citation recorded.