Performansi Kolektor Surya Pada Mesin Pendingin Yang Menggunakan Pasangan Adsorpsi Karbon Aktif Serbuk-Metanol

*Tulus Burhanuddin Sitorus scopus  -  Departemen Teknik Mesin, Universitas Sumatera Utara, Indonesia
Syahrul Abda  -  Departemen Teknik Mesin, Universitas Sumatera Utara, Indonesia
Received: 12 Sep 2019; Revised: 4 Dec 2019; Accepted: 10 Apr 2019; Published: 31 May 2020.
Open Access
Citation Format:
Article Info
Section: Artikel
Language: ID
Statistics: 94 61
Abstract

Kolektor merupakan salah satu komponen utama dari mesin pendingin adsorpsi tenaga surya. Dapat dikatakan bahwa kolektor merupakan motor penggerak dari siklus yang terjadi pada mesin pendingin adsorpsi. Pada penelitian ini digunakan kolektor tipe plat datar dengan luas penampang 0,5 m2 dan diisi dengan menggunakan pasangan adsorpsi karbon aktif serbuk-metanol. Proses pengujian dilakukan di lokasi yang terkena paparan radiasi matahari selama beberapa hari. Alat ukur cuaca digunakan untuk mengetahui parameter yang diukur seperti intensitas radiasi, temperatur dan kelembaban udara lingkungan. Sedangkan alat ukur termokopel yang terhubung dengan alat akuisisi data digunakan untuk merekam perubahan temperatur pada komponen kolektor dan mesin pendingin adsorpsi. Hasil eksperimental menunjukkan bahwa efisiensi kolektor yang diperoleh memiliki nilai maksimum sebesar 55,43%. Diperoleh juga pengaruh kondisi cuaca terhadap kinerja kolektor berdasarkan analisa statistik sebesar 72%

Keywords: kolektor surya; performansi; mesin pendingin adsorpsi

Article Metrics:

  1. Cherrad, N., Benchabane, A., Sedira, L., & Rouag, A. (2018). Transient numerical model for predicting operating temperatures of solar adsorption refrigeration cycle. Applied Thermal Engineering, 130, 1163-1174.
  2. Chen, Q. F., Du, S. W., Yuan, Z. X., Sun, T. B., & Li, Y. X. (2018). Experimental study on performance change with time of solar adsorption refrigeration system. Applied Thermal Engineering, 138, 386-393.
  3. Duffie, J.A. (2006). Solar Engineering of Thermal Processes, 3rd Ed., New York: Wiley.
  4. Farhana, K., Kadirgama, K., Rahman, M. M., Ramasamy, D., Noor, M. M., Najafi, G., ... & Mahamude, A. S. F. (2019). Improvement in the performance of solar collectors with nanofluids—A state-of-the-art review. Nano-Structures & Nano-Objects, 18, 100276.
  5. Fernandes, M. S., Brites G. J. V. N., Costa J.J., Gaspar A.R., & Costa V.A.F. (2014). Review and future trends of solar adsorption refrigeration systems. Renewable and Sustainable Energy Reviews, 39 102-123.
  6. Ammar, M. H., Benhaoua, B., & Bouras, F. (2017). Thermodynamic analysis and performance of an adsorption refrigeration system driven by solar collector. Applied Thermal Engineering, 112, 1289-1296.
  7. Kalogirou, S. (2009). Solar Energy Engineering Process and Systems. USA : The Cyprus University of Technology.
  8. Mahmoud A. S., Gyula G., & Omid M. (2017). Experimental Study on the Performance of a Flat-Plate Collector Using WO3/Water Nanofluids, Energy, 2436-2444.
  9. Mahesh, A.. (2017). Solar collectors and adsorption materials aspects of cooling system. Renewable and Sustainable Energy Reviews 73, 1300-1312
  10. Mehdi, Z., Yogi, G. & Elias S. (2015). A review of solar thermo-mechanical refrigeration and cooling methods. Renewable and Sustainable Energy Reviews 51, 1428 - 1445.
  11. Rashidi, S., Esfahani, J. A., & Rashidi, A. (2017). A review on the applications of porous materials in solar energy systems. Renewable and Sustainable Energy Reviews, 73, 1198-1210.
  12. Sitorus, T.B., Napitupulu F.H., & Ambarita H. (2016). Experimental Study of Solar Refrigerator System Using Activated Alumina and Methanol Adsorption Pair. International Journal of Technology, 7(5), 910-920.
  13. Sitorus, T.B., Napitupulu, F.H., & Ambarita, H. (2017). A Study on Adsorption Refrigerator Driven by Solar Collector Using Indonesian Activated Carbon. Journal of Engineering and Technological Sciences, 49(5), 657-670.
  14. Umair, M., Atsushi, A., & Yuki, U. (2014). Performance Evaluation of a Solar Adsorption Refrigeration System with a Wing Type Compound Parabolic Concentrator. Energies, 7, 1448-1466.
  15. Yunfeng, W., Ming, L., Xu, J., Qiongfen, Y., Guoliang, L., & Xun, M. (2018). Experimental study of the effect of enhanced mass transfer on the performance improvement of a solar-driven adsorption refrigeration system. Applied Energy, 224, 417-425.