Verifikasi Deep-V Planing Hull Menggunakan Finite Volume Method Pada Kondisi Air Tenang

Pengujian eksperimen menggunakan towing tank adalah salah satu cara yang digunakan untuk memprediksi hambatan kapal. Metode alternatif lain yang dapat digunakan adalah metode Computational Fluid Dynamics (CFD). Metode ini menjadi trend di industri maritime karena biaya pengujian eksperimen pada towing tank semakin mahal dan diikuti dengan perkembangan ilmu dan teknologi tentang mekanika fluida menggunakan metode Computational Fluid Dynamics (CFD) yang sangat pesat. Penelitian ini bertujuan untuk untuk memverifikasi performa kapal cepat menggunakan metode komputasi. Metode CFD yang digunakan untuk menyelesaikan permasalahan mekanika fluida ini adalah dengan menggunakan persamaan Reynolds-Averaged Navier-Stokes untuk menggambarkan model turbulensi dengan k-ε, dengan menggunakan aliran multiphase Euler yang diasumsikan air dan udara. Dynamic Fluid Body Interaction (DBFI) adalah modul yang mensimulasikan gerakan benda sebagai respon terhadap gaya yang diterapkan oleh kontinum fisika. DBFI heave dan pitch pada penelitian ini diasumsikan bergerak bebas untuk dapat menghitung gerakan kapal. Hasi penelitian ini menunjukkan bahwa CFD dapat membantu dalam mempredisksi hambatan, trim dan kenaikan titik gravitasi.
Article Metrics:
- Akkerman, I., Dunaway, J., Kvandal, J., Spinks, J., & Bazilevs, Y. (2012). Toward free-surface modeling of planing vessels: Simulation of the Fridsma hull using ALE-VMS. Computational Mechanics, 50(6), 719–727. https://doi.org/10.1007/s00466-012-0770-2
- Avci, A. G., & Barlas, B. (2018). An experimental and numerical study of a high-speed planing craft with full-scale validation. Journal of Marine Science and Technology, 26(5), 617–628. https://doi.org/10.6119/JMST.201810
- Brizzolara, S., & Serra, F. (2007). Accuracy of CFD codes in the prediction of planing surfaces hydrodynamic characteristics. The 2nd International Conference on Marine Research and Transportation, (June 2007), 147–158. Retrieved from http://www.icmrt07.unina.it/Proceedings/Papers/B/14.pdf
- Caponnetto, M. (2001). Practical CFD simulations for planing hulls. International Conference on High Performance Marine Vehicles (HIPER’ 01)
- Caponnetto, M., Söding, H., & Azcueta, R. (2003). Motion simulations for planing boats in waves. Ship Technology Research, 50(4), 182–198. https://doi.org/10.1179/str.2003.50.4.006
- De Marco, A., Mancini, S., Miranda, S., Scognamiglio, R., & Vitiello, L. (2017). Experimental and numerical hydrodynamic analysis of a stepped planing hull. Applied Ocean Research, 64, 135–154. https://doi.org/10.1016/j.apor.2017.02.004
- Federici, A. (2014). Design and analysis of non-conventional hybrid high-speed hulls with hydrofoils by CFD methods. University of Genoa
- Fridsma, G. (1969). A Systematic study of the rough-water performance of planing boats. Hoboken, New Jersey
- Fridsma, G. (1971). A Systematic study of the rough-water performance of planing boats. Irregular waves. Hoboken, New Jersey
- Ghassemi, H., & Yu-min, S. (2008). Determining the hydrodynamic forces on a planing hull in steady motion. Journal of Marine Science and Application, 7(3), 147–156. https://doi.org/10.1007/s11804-008-7057-1
- Gray-Stephens, A., Tezdogan, T., & Day, S. (2019). Strategies to minimise numerical ventilation in CFD simulations of high-speed planing hulls. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2, 1–10. https://doi.org/10.1115/OMAE2019-95784
- Hirsch, C. (2007). Numerical Computation of Internal and External Flows. https://doi.org//10.1016/B978-0-7506-6594-0.X5037-1
- ITTC. (2014). Practical guidelines for ship CFD applications. Specialist Committee on CFD in Marine Hydrodynamics of the 27th ITTC
- Kihara, H. (2006). A computing method for the flow analysis around a prismatic planing-hull. High Performance Marine Vehicles, 262–270. Australia: Australian Maritime College
- Kim, D. J., & Kim, S. Y. (2017). Comparative study on manoeuvring performance of model and full-scale Waterjet propelled planing boats. International Conference on Fast Sea Transportation, 126–135. Nates-France. 27 - 29 September
- Kim, D. J., Kim, S. Y., You, Y. J., Rhee, K. P., Kim, S. H., & Kim, Y. G. (2013). Design of high-speed planing hulls for the improvement of resistance and seakeeping performance. International Journal of Naval Architecture and Ocean Engineering, 5(1), 161–177. https://doi.org/10.3744/JNAOE.2013.5.1.161
- Launder, B., & Spalding, D. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289
- Lotfi, P., Ashrafizaadeh, M., & Esfahan, R. K. (2015). Numerical investigation of a stepped planing hull in calm water. Ocean Engineering, 94, 103–110. https://doi.org/10.1016/j.oceaneng.2014.11.022
- Marshall, R. (2002). All about powerboats: understanding design and performance. McGraw Hill Professional
- Mousaviraad, S. M., Wang, Z., & Stern, F. (2015). URANS studies of hydrodynamic performance and slamming loads on high-speed planing hulls in calm water and waves for deep and shallow conditions. Applied Ocean Research, 51, 222–240. https://doi.org/10.1016/j.apor.2015.04.007
- Samuel, Iqbal, M., & Utama, I. K. A. P. (2015). An investigation into the resistance components of converting a traditional monohull fishing vessel into catamaran form. International Journal of Technology, 6(3). https://doi.org/10.14716/ijtech.v6i3.940
- Samuel, Trimulyono, A., & Santosa, A. W. B. (2019). Simulasi CFD pada Kapal Planing Hull. Jurnal Ilmu Pengetahuan & Teknologi Kelautan, 16(3), 123–128. https://doi.org/10.14710/kapal.v16i3.26397
- Savander, Scorpio, S. M., & Taylor, R. (2002). Steady hydrodynamic analysis of planing surfaces. Journal of Ship Research, 46, 248–279
- Savitsky, D. (1964). Hydrodynamic design of planing hulls. Marine Technology and SNAME, 1(1), 71–95
- Savitsky, D., & Brown, P. W. (1976). Procedures for hydrodynamic evaluation of planing hulls in smooth and rough water. Marine Technology, 13(4), 381–400
- Senocak, I., & Iaccarino, G. (2005). Progress towards RANS simulation of free-surface flow around modern ships. Annual Research Brifes, Center for Turbulence Research, 151–156
- Star-CCM+. (2018). User guide star-CCM+. Version 13.02
- Sukas, O. F., Kinaci, O. K., Cakici, F., & Gokce, M. K. (2017). Hydrodynamic assessment of planing hulls using overset grids. Applied Ocean Research, 65, 35–46. https://doi.org/10.1016/j.apor.2017.03.015
- Sun, H., & Faltinsen, O. M. (2010). Numerical study of planing vessels in waves. 9th International Conference on Hydrodynamics, 22, 451–458. https://doi.org/10.1016/S1001-6058(09)60238-9
- Versteeg, H. K., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Retrieved from https://books.google.co.id/books?id=RvBZ-UMpGzIC
- Xie, N., Vassalos, D., & Jasionowski, A. (2005). A study of hydrodynamics of three-dimensional planing surface. Ocean Engineering, 32(13), 1539–1555
- Yang, C., Löhner, R., Noblesse, F., & Huang, T. T. (2000). Calculation of ship sinkage and trim using unstructured grids. European Congress on Computational Methods in Applied Sciences and Engineering, (September). ECCOMAS
- Yousefi, R., Shafaghat, R., & Shakeri, M. (2013). Hydrodynamic analysis techniques for high-speed planing hulls. Applied Ocean Research, 42, 105–113. https://doi.org/10.1016/j.apor.2013.05.004
- Yousefi, R., Shafaghat, R., & Shakeri, M. (2014). High-speed planing hull drag reduction using tunnels. Ocean Engineering, 84, 54–60. https://doi.org/10.1016/j.oceaneng.2014.03.033
Last update: 2021-02-26 21:23:17
Last update: 2021-02-26 21:23:18
License URL: http://creativecommons.org/licenses/by-sa/4.0
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to jurnal TEKNIK and Faculty of Engineering, Diponegoro University as publisher of the journal.
Copyright transfer agreement can be found here: [Copyright transfer agreement in doc] and [Copyright transfer agreement in pdf].