skip to main content

Verifikasi Deep-V Planing Hull Menggunakan Finite Volume Method Pada Kondisi Air Tenang

*Samuel Samuel scopus  -  Departemen Teknik Perkapalan, Universitas Diponegoro, Indonesia
Sarjito Jokosisworo  -  Departemen Teknik Perkapalan, Universitas Diponegoro, Indonesia
Muhammad Iqbal  -  Departemen Teknik Perkapalan, Universitas Diponegoro, Indonesia
Parlindungan Manik  -  Departemen Teknik Perkapalan, Universitas Diponegoro, Indonesia
Good Rindo  -  Departemen Teknik Perkapalan, Universitas Diponegoro, Indonesia
Open Access Copyright (c) 2020 TEKNIK

Citation Format:
Abstract

Pengujian eksperimen menggunakan towing tank adalah salah satu cara yang digunakan untuk memprediksi hambatan kapal. Metode alternatif lain yang dapat digunakan adalah metode Computational Fluid Dynamics (CFD). Metode ini menjadi trend di industri maritime karena biaya pengujian eksperimen pada towing tank semakin mahal dan diikuti dengan perkembangan ilmu dan teknologi tentang mekanika fluida menggunakan metode Computational Fluid Dynamics (CFD) yang sangat pesat. Penelitian ini bertujuan untuk untuk memverifikasi performa kapal cepat menggunakan metode komputasi. Metode CFD yang digunakan untuk menyelesaikan permasalahan mekanika fluida ini adalah dengan menggunakan persamaan Reynolds-Averaged Navier-Stokes untuk menggambarkan model turbulensi dengan k-ε, dengan menggunakan aliran multiphase Euler yang diasumsikan air dan udara. Dynamic Fluid Body Interaction (DBFI) adalah modul yang mensimulasikan gerakan benda sebagai respon terhadap gaya yang diterapkan oleh kontinum fisika. DBFI heave dan pitch pada penelitian ini diasumsikan bergerak bebas untuk dapat menghitung gerakan kapal. Hasi penelitian ini menunjukkan bahwa CFD dapat membantu dalam mempredisksi hambatan, trim dan kenaikan titik gravitasi.

Fulltext View|Download
Keywords: computational fluid dynamic; dynamic fluid body interaction; kapal cepat

Article Metrics:

  1. Akkerman, I., Dunaway, J., Kvandal, J., Spinks, J., & Bazilevs, Y. (2012). Toward free-surface modeling of planing vessels: Simulation of the Fridsma hull using ALE-VMS. Computational Mechanics, 50(6), 719–727. https://doi.org/10.1007/s00466-012-0770-2
  2. Avci, A. G., & Barlas, B. (2018). An experimental and numerical study of a high-speed planing craft with full-scale validation. Journal of Marine Science and Technology, 26(5), 617–628. https://doi.org/10.6119/JMST.201810
  3. Brizzolara, S., & Serra, F. (2007). Accuracy of CFD codes in the prediction of planing surfaces hydrodynamic characteristics. The 2nd International Conference on Marine Research and Transportation, (June 2007), 147–158. Retrieved from http://www.icmrt07.unina.it/Proceedings/Papers/B/14.pdf
  4. Caponnetto, M. (2001). Practical CFD simulations for planing hulls. International Conference on High Performance Marine Vehicles (HIPER’ 01)
  5. Caponnetto, M., Söding, H., & Azcueta, R. (2003). Motion simulations for planing boats in waves. Ship Technology Research, 50(4), 182–198. https://doi.org/10.1179/str.2003.50.4.006
  6. De Marco, A., Mancini, S., Miranda, S., Scognamiglio, R., & Vitiello, L. (2017). Experimental and numerical hydrodynamic analysis of a stepped planing hull. Applied Ocean Research, 64, 135–154. https://doi.org/10.1016/j.apor.2017.02.004
  7. Federici, A. (2014). Design and analysis of non-conventional hybrid high-speed hulls with hydrofoils by CFD methods. University of Genoa
  8. Fridsma, G. (1969). A Systematic study of the rough-water performance of planing boats. Hoboken, New Jersey
  9. Fridsma, G. (1971). A Systematic study of the rough-water performance of planing boats. Irregular waves. Hoboken, New Jersey
  10. Ghassemi, H., & Yu-min, S. (2008). Determining the hydrodynamic forces on a planing hull in steady motion. Journal of Marine Science and Application, 7(3), 147–156. https://doi.org/10.1007/s11804-008-7057-1
  11. Gray-Stephens, A., Tezdogan, T., & Day, S. (2019). Strategies to minimise numerical ventilation in CFD simulations of high-speed planing hulls. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2, 1–10. https://doi.org/10.1115/OMAE2019-95784
  12. Hirsch, C. (2007). Numerical Computation of Internal and External Flows. https://doi.org//10.1016/B978-0-7506-6594-0.X5037-1
  13. ITTC. (2014). Practical guidelines for ship CFD applications. Specialist Committee on CFD in Marine Hydrodynamics of the 27th ITTC
  14. Kihara, H. (2006). A computing method for the flow analysis around a prismatic planing-hull. High Performance Marine Vehicles, 262–270. Australia: Australian Maritime College
  15. Kim, D. J., & Kim, S. Y. (2017). Comparative study on manoeuvring performance of model and full-scale Waterjet propelled planing boats. International Conference on Fast Sea Transportation, 126–135. Nates-France. 27 - 29 September
  16. Kim, D. J., Kim, S. Y., You, Y. J., Rhee, K. P., Kim, S. H., & Kim, Y. G. (2013). Design of high-speed planing hulls for the improvement of resistance and seakeeping performance. International Journal of Naval Architecture and Ocean Engineering, 5(1), 161–177. https://doi.org/10.3744/JNAOE.2013.5.1.161
  17. Launder, B., & Spalding, D. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269–289
  18. Lotfi, P., Ashrafizaadeh, M., & Esfahan, R. K. (2015). Numerical investigation of a stepped planing hull in calm water. Ocean Engineering, 94, 103–110. https://doi.org/10.1016/j.oceaneng.2014.11.022
  19. Marshall, R. (2002). All about powerboats: understanding design and performance. McGraw Hill Professional
  20. Mousaviraad, S. M., Wang, Z., & Stern, F. (2015). URANS studies of hydrodynamic performance and slamming loads on high-speed planing hulls in calm water and waves for deep and shallow conditions. Applied Ocean Research, 51, 222–240. https://doi.org/10.1016/j.apor.2015.04.007
  21. Samuel, Iqbal, M., & Utama, I. K. A. P. (2015). An investigation into the resistance components of converting a traditional monohull fishing vessel into catamaran form. International Journal of Technology, 6(3). https://doi.org/10.14716/ijtech.v6i3.940
  22. Samuel, Trimulyono, A., & Santosa, A. W. B. (2019). Simulasi CFD pada Kapal Planing Hull. Jurnal Ilmu Pengetahuan & Teknologi Kelautan, 16(3), 123–128. https://doi.org/10.14710/kapal.v16i3.26397
  23. Savander, Scorpio, S. M., & Taylor, R. (2002). Steady hydrodynamic analysis of planing surfaces. Journal of Ship Research, 46, 248–279
  24. Savitsky, D. (1964). Hydrodynamic design of planing hulls. Marine Technology and SNAME, 1(1), 71–95
  25. Savitsky, D., & Brown, P. W. (1976). Procedures for hydrodynamic evaluation of planing hulls in smooth and rough water. Marine Technology, 13(4), 381–400
  26. Senocak, I., & Iaccarino, G. (2005). Progress towards RANS simulation of free-surface flow around modern ships. Annual Research Brifes, Center for Turbulence Research, 151–156
  27. Star-CCM+. (2018). User guide star-CCM+. Version 13.02
  28. Sukas, O. F., Kinaci, O. K., Cakici, F., & Gokce, M. K. (2017). Hydrodynamic assessment of planing hulls using overset grids. Applied Ocean Research, 65, 35–46. https://doi.org/10.1016/j.apor.2017.03.015
  29. Sun, H., & Faltinsen, O. M. (2010). Numerical study of planing vessels in waves. 9th International Conference on Hydrodynamics, 22, 451–458. https://doi.org/10.1016/S1001-6058(09)60238-9
  30. Versteeg, H. K., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Retrieved from https://books.google.co.id/books?id=RvBZ-UMpGzIC
  31. Xie, N., Vassalos, D., & Jasionowski, A. (2005). A study of hydrodynamics of three-dimensional planing surface. Ocean Engineering, 32(13), 1539–1555
  32. Yang, C., Löhner, R., Noblesse, F., & Huang, T. T. (2000). Calculation of ship sinkage and trim using unstructured grids. European Congress on Computational Methods in Applied Sciences and Engineering, (September). ECCOMAS
  33. Yousefi, R., Shafaghat, R., & Shakeri, M. (2013). Hydrodynamic analysis techniques for high-speed planing hulls. Applied Ocean Research, 42, 105–113. https://doi.org/10.1016/j.apor.2013.05.004
  34. Yousefi, R., Shafaghat, R., & Shakeri, M. (2014). High-speed planing hull drag reduction using tunnels. Ocean Engineering, 84, 54–60. https://doi.org/10.1016/j.oceaneng.2014.03.033

Last update:

  1. Study of middle interceptor implementation on patrol boat

    Samuel, Aji Setiawan, Eko Sasmito Hadi, Muhammad Iqbal, Parlindungan Manik. INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING AND MANUFACTURING SYSTEMS: ICMEMS2022, 2747 , 2023. doi: 10.1063/5.0114759

Last update: 2025-01-22 12:02:02

No citation recorded.