skip to main content

The development of A Simulation Tool for Numerical Modelling of High Flexure and High Shear Reinforced Concrete Elements

Pengembangan Alat Simulasi Model Numeris Elemen Beton Bertulang dengan Respon Geser dan Lentur Tinggi

*Nuroji Nuroji scopus  -  Departemen Teknik Sipil Fakultas Teknik, Universitas Diponegoro, Indonesia
Muhammad Rony Asshidiqie  -  Departemen Teknik Sipil Fakultas Teknik, Universitas Diponegoro, Indonesia
Sukamta Sukamta scopus  -  Departemen Teknik Sipil Fakultas Teknik, Universitas Diponegoro, Indonesia
Ay Lie Han orcid scopus  -  Departemen Teknik Sipil Fakultas Teknik, Universitas Diponegoro, Indonesia
Open Access Copyright (c) 2021 TEKNIK

Citation Format:
Abstract
The weakness of full-scale testing of reinforced concrete elements in a laboratory is the long period, both to prepare and test specimens and the high-cost, resulting in a limited number of specimens. The heavy specimen creates another difficulty during set-up. Data accuracy depends on apparatus precision, laboratory conditions, and the technicians' expertise in experimenting. A finite element model was constructed to simulate a reinforced concrete element subject to high flexure and shear stresses induced by vertical and horizontal forces to overcome these constraints. The model can further be utilized to evaluate the effects of independent variables on the behavior of the member. The model was validated both numerically and experimentally to ensure accuracy and precision. The numerical validation was conducted through a sensitivity analyses process on the finesses of meshing and loading incrementation. At the same time, the load-deformation data and the crack propagation of identical laboratory-tested elements were utilized for validation of the experimental data. It was proven that the developed model predicts the behavior of the beam to a high degree of correctness. The model can further be used as a tool for analyses in the field.
Fulltext View|Download
Keywords: numerical modelling; finite element method; flexure and shear behavior; model validation

Article Metrics:

  1. Ayash, N. M., Abd-Elrahman, A. M., & Soliman, A. E. (2020, December). Repairing and strengthening of reinforced concrete cantilever slabs using Glass Fiber–Reinforced Polymer (GFRP) wraps. In Structures (Vol. 28, pp. 2488-2506). Elsevier. https://doi.org/10.1016/j.istruc.2020.10.053
  2. Bahraq, A. A., Al-Osta, M. A., Ahmad, S., Al-Zahrani, M. M., Al-Dulaijan, S. O., & Rahman, M. K. (2019). Experimental and numerical investigation of shear behavior of RC beams strengthened by ultra-high performance concrete. International Journal of Concrete Structures and Materials, 13(1), 1-19. https://doi.org/10.1186/s40069-018-0330-z
  3. Elbehiry, A., Elnawawy, O., Kassem, M., Zaher, A., & Mostafa, M. (2021). FEM evaluation of reinforced concrete beams by hybrid and banana fiber bars (BFB). Case Studies in Construction Materials, 14, e00479. https://doi.org/10.1016/j.cscm.2020.e00479
  4. Farooq, U., Nakamura, H., Miura, T., & Yamamoto, Y. (2020). Proposal of bond behavior simulation model by using discretized voronoi mesh for concrete and beam element for reinforcement. Cement and Concrete Composites, 110, 103593. https://doi.org/10.1016/j.cemconcomp.2020.103593
  5. Feirusha, S. H., & Abdal, A. M. (2019). Theoretical investigation of stresses and displacement in RC annular slabs. International Journal of Engineering Research and Technology, 12(6), 1069-1090
  6. Fib-CED. (2013). fib Model Code for Concrete Structures 2010. https://doi.org/https://doi.org/10.1002/9783433604090
  7. Fib Model Code for Concrete Structures 2010. (2013). fib Model Code for Concrete Structures 2010. wiley. https://doi.org/10.1002/9783433604090
  8. Filippoupolitis, M., & Hopkins, C. (2021). Experimental validation of finite element models representing stacked concrete beams with unbonded surface contacts. Engineering Structures, 227, 111421. https://doi.org/10.1016/j.engstruct.2020.111421
  9. Halahla, A. (2018). Study the behavior of reinforced concrete beam using finite element analysis. Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering (April 2018).(Vol. 10). https://doi.org/10.11159/icsenm18.103
  10. Hordijk, D. A. (1991). Cohesive model for crack propagation analyses of structures with elastic–plastic material behavior Foundations and implementation. Dissertation, Delft University of Technology, 41
  11. Khalfallah, S., Charif, A., & Mohammed, N. (2004). Nonlinear analysis of reinforced concrete structures using a new constitutive model. Revue Européenne des Eléments, 13(8), 841-856. https://doi.org/10.3166/reef.13.841-856
  12. Kurumatani, M., Soma, Y., & Terada, K. (2019). Simulations of cohesive fracture behavior of reinforced concrete by a fracture-mechanics-based damage model. Engineering Fracture Mechanics, 206, 392-407. https://doi.org/10.1016/j.engfracmech.2018.12.006
  13. Lantsoght, E. O., De Boer, A., van der Veen, C., & Hordijk, D. A. (2019). Optimizing Finite Element Models for Concrete Bridge Assessment With Proof Load Testing. Frontiers in Built Environment, 5, 99. https://doi.org/10.3389/fbuil.2019.00099
  14. Magnucki, K., Lewinski, J., & Magnucka-Blandzi, E. (2020). Bending of two-layer beams under uniformly distributed load–Analytical and numerical FEM studies. Composite Structures, 235, 111777. https://doi.org/10.1016/j.compstruct.2019.111777
  15. Maulana, R., & Riko, R. (2020). Studi eksperimental perilaku balok t akibat geser dan momen negatif
  16. Mehrpay, S., Wang, Z., & Ueda, T. (2020). Development and application of a new discrete element into simulation of nonlinear behavior of concrete. Structural Concrete, 21(2), 548-569. https://doi.org/10.1002/suco.201900059
  17. Naderpour, H., & Mirrashid, M. (2020). Evaluation and verification of finite element analytical models in reinforced concrete members. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(2), 463-480. https://doi.org/10.1007/s40996-019-00240-8
  18. Oh, C. L., Lee, S. W., Raizamzamani, M. M., Azerai, A. R., & Azmi, Y. N. (2018). Finite element analysis of high strength reinforced concrete beams. In MATEC Web of Conferences (Vol. 250, p. 03007). EDP Sciences. https://doi.org/10.1051/matecconf/201825003007
  19. Pranata, A. Y., Tjitradi, D., & Prasetia, I. (2020). Horizontal Web Reinforcement Configuration Analysis of Deep Beam Capacity and Behavior using Finite Element Modeling. Engineering, Technology & Applied Science Research, 10(1), 5242-5246. https://doi.org/10.48084/etasr.3256
  20. Rahman, A. F., Goh, W. I., Mohamad, N., Kamarudin, M. S., & Jhatial, A. A. (2019). Numerical analysis and experimental validation of reinforced foamed concrete beam containing partial cement replacement. Case Studies in Construction Materials, 11, e00297. https://doi.org/10.1016/j.cscm.2019.e00297
  21. Rai, P. (2020). Non-Linear Finite Element Analysis of RC Deep Beam Using CDP Model. Advances in Technology Innovation, 6(1), 1. https://doi.org/10.46604/aiti.2021.5407
  22. Sader Mohammed, D. A. (2019). Validation of Finite Element Modeling for Rectangular Reinforced Concrete Beams With Web Openings. Journal of Engineering and Sustainable Development, 23(3), 89–98. https://doi.org/10.31272/jeasd.23.3.7
  23. Thorenfeldt, E., Tomaszewicz, A., & Jensen, J. (1987). Mechanical properties of high-strength concrete and application in design. Symposium Proceedings, Utilization of High-Strength Concrete, Norway, 1987
  24. Tudjono, S., Lie, H. A., & Gan, B. S. (2018). An integrated system for enhancing flexural members’ capacity via combinations of the fiber reinforced plastic use, retrofitting, and surface treatment techniques. International Journal of Technology, 9(1). https://doi.org/10.14716/ijtech.v9i1.298
  25. Tudjono, S., Han, A. L., & Hariwijaya, L. H. (2013). Reinforced concrete finite element analysis incorporating material nonlinearity and failure criteria aspects. Applied Mechanics and Materials, 284–287, 1230–1234. https://doi.org/10.4028/www.scientific.net/AMM.284-287.1230
  26. Vecchio, F. J., & Collins, M. P. (1986). The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J., 83(2), 219-231.. https://doi.org/10.14359/10416
  27. Venkatachalam, S., Vishnuvardhan, K., Amarapathi, G. D., Mahesh, S. R., & Deepasri, M. (2021). Experimental and finite element modelling of reinforced geopolymer concrete beam. Materials Today: Proceedings, 45, 6500-6506. https://doi.org/10.1016/j.matpr.2020.11.449
  28. Yi, W. J., Huang, B., & Chen, H. (2017). Finite element analysis on the effect of web reinforcement on shear failure of reinforced concrete continuous deep beams. Chinese Journal of Computational Mechanics, 34(2), 175-182. https://doi.org/10.7511/jslx201702008
  29. Zhang, P., Restrepo, J. I., Conte, J. P., & Ou, J. (2017). Nonlinear finite element modeling and response analysis of the collapsed Alto Rio building in the 2010 Chile Maule earthquake. The Structural Design of Tall and Special Buildings, 26(16), e1364. https://doi.org/10.1002/tal.1364

Last update:

No citation recorded.

Last update: 2024-12-25 14:24:15

No citation recorded.