skip to main content

Quality Service Improvement using Hybrid Big Data Analytics Model: A Case of AYCE Korean BBQ Restaurant

Perbaikan Kualitas Layanan Menggunakan Model Hibrid Analisis Big Data: Kasus Restoran Barbeque Korea AYCE

*Ronald Sukwadi orcid scopus  -  Program Studi Teknik Industri, Universitas Katolik Indonesia Atma Jaya, Indonesia
Williem Halim  -  Program Studi Teknik Industri, Universitas Katolik Indonesia Atma Jaya, Indonesia
Nguyen Thi Bich Thu  -  Industrial Systems Engineering, HCMC University of Technology and Education, Viet Nam
Open Access Copyright (c) 2022 TEKNIK

Citation Format:
The culinary industry continues to develop every year. One of the phenomena is all you can eat (AYCE) Korean BBQ restaurant. This will cause increasingly intense competition in the restaurant business. The aims of this study are to identify customer needs, to determine the priority of the service attributes, and to provide appropriate suggestions to AYCE Korean BBQ restaurant. The big data analysis using LDA method was applied to determine customer needs based on the Zomato review. The results showed that ten customer needs are identified as Voice of Customer (VOC) for HOQ of the Quality Function Deployment (QFD). The results of the AHP showed that 5 priorities of improvement strategies. The appropriate suggestions for Korean BBQ restaurant are to create a layered control system and customer satisfaction surveys, to implement FIFO and LIFO systems, to check the condition of raw material storage equipment, to improve existing service SOPs, and to provide periodic briefings and training.
Fulltext View|Download
Keywords: customer needs; restaurant; big data analysis; QFD; AHP

Article Metrics:

  1. Arun, R., Suresh, V., Veni Madhavan, C. E., & Narasimba Murty, M. (2010). On finding the natural number of topics with Latent Dirichlet Allocation: Some Observations. Advances in Knowledge Discovery and Data Mining, 6118, 391-402.
  2. Bolar, A. A. (2014). A Quality Function Deployment (QFD) Approach For Bridge Maintenence Management (p. 33). Columbia: The University of British Columbia
  3. Cao, J., Xia, T., Li, J., Zhang, Y., & Tang, S. (2009). A density-based method for adaptive LDA model selection. Neurocomputing, 72, 1775 - 1781.
  4. Chen, Shun-Hsing, & Chen-Kuo, P. (2014). Using the QFD technical to improve service quality in vegetarian foods industry. International Journal of Academic Research in Business and Social Sciences, 4(2), 162-168.
  5. Chin, K. S., Yang, Q., Chan, C. Y., Tsui, K. L., & Li, Y. L. (2019). Identifying passengers’ needs in cabin interiors of high-speed rails in China using quality function deployment for improving passenger satisfaction. Transportation Research Part A: Policy and Practice, 119, 326-342.
  6. Falatehan, A. F. (2016). Analytical Hierarchy Process (AHP). Yogyakarta: Indomedia Pustaka
  7. Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. The National Academy of Sciences of the United States of America, 101, 5228 - 5235.
  8. Haddi, E., Liu, X., & Shi, Y. (2013). The role of text pre-processing in sentiment analysis. Procedia Computer Science, 17, 26-32.
  9. Ho, W., He, T., Lee, C. K. M., & Emrouznejad, A. (2012). Strategic logistics outsourcing: An integrated QFD and fuzzy AHP approach. Expert Systems with Applications, 39(12), 10841-10850.
  10. Jafarzadeh, H., Akbari, P., & Abedin, B. (2018). A Methodology for project portfolio selection under criteria prioritisation, uncertainty and projects interdependency-combination of Fuzzy QFD and DEA. Expert Systems With Applications, 110, 237-249.
  11. Kamvysi, K., Gotzamani, K., Andronikidis, A., & Georgiou, A. C. (2014). Capturing and prioritizing students’ requirements for course design by embedding Fuzzy-AHP and linear programming in QFD. European Journal of Operational Research, 237(3), 1083-1094.
  12. Kim, J., Lee, M., Kwon, W., Park, H., & Back, K. J. (2022). Why am I satisfied? See my reviews–Price and location matter in the restaurant industry. International Journal of Hospitality Management, 101, 103111.
  13. Lemeshow, S., Hosmer, D. W., Klar, J., & Lwangga, S. K. (1990). Adequacy of Sample Size in Health Studies (p. 1). New York: World Health Organization
  14. Li, B., Zhong, Y., Zhang, T., & Hua, N. (2021). Transcending the COVID-19 crisis: Business resilience and innovation of the restaurant industry in China. Journal of Hospitality and Tourism Management, 49, 44-53.
  15. Lusiana, P., Abdul, R. M., & Rosnani, G. (2013). Upaya peningkatan kualitas jasa kesehatan menggunakan integrasi Quality Function Deployment (QFD) dengan Analytical Hierarchy Process (AHP). Jurnal Teknik Industri FT USU, 1, 31-36
  16. Meek, S., Wilk, V., & Lambert, C. (2021). A big data exploration of the informational and normative influences on the helpfulness of online restaurant reviews. Journal of Business Research, 125, 354-367.
  17. Ngo-Ye, T. L., & Sinha, A. P. (2014). The influence of reviewer engagement characteristics on online review helpfulness: A text regression model. Decision Support Systems, 61, 47-58.
  18. Ocampo, L. A., Labrador, J. J. T., Jumao-as, A. M. B., & Rama, A. M. O. (2020). Integrated multiphase sustainable product design with a hybrid quality function deployment–multi-attribute decision-making (QFD-MADM) framework. Sustainable Production and Consumption, 24, 62-78.
  19. Park, S. H., Ham, S., & Lee, M. A. (2012). How to improve the promotion of Korean beef barbecue, bulgogi, for international customers. An application of quality function deployment. Appetite, 59(2), 324-332.
  20. Park, S., Lehto, X., & Lehto, M. (2021). Self-service technology kiosk design for restaurants: An QFD application. International Journal of Hospitality Management, 92, 102757.
  21. Pai, Chen, K., Shun-Hsing, C., & David, H. (2016). Measuring service quality in Macau luxury hotels using the QFD method: A case study. International Journal Services Technology and Management, 22(1), 106-119.
  22. Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of big data challenges and analytical methods. Journal of Computer-Mediated Communication, 11(4), 1104-1127
  23. Sugiyono. (2011). Metode Penelitian Kuantitatif dan Kualitatif (p. 128). Bandung: CV Alfabeta
  24. Sukwadi, R. (2015). Utilizing Customer Experience Management framework to create a delightful service experience, International Journal of Industrial Engineering and Management, 6(1), 29-42
  25. Sukwadi, R. (2017). The moderating role of service innovation on the relationship between customer satisfaction and customer value: A case of 3-star hotels in Jakarta, International Journal of
  26. Services, Economics and Management,8(1/2), 18-34.
  27. Sukwadi, R. (2019). Penerapan model IS-DEMATEL dalam analisis kualitas restoran Solaria di Jakarta Timur, Spektrum Industri, 17(1), 69-78.
  28. Sukwadi, R., & Agustin, D. (2016). Analisis kualitas layanan restoran dengan menggunakan model Kano-PRCA dan AIM, Spektrum Industri. 14(1), 89-98.
  29. Sukwadi, R., Muafi, & Sanjaya, H.P. (2018). Incorporating Kansei Engineering into Service Quality tools to improve the Airline services, International Journal for Quality Research, 12(2), 297-316
  30. Sukwadi, R., Suprata, F., & Santosa, S.C. (2020). Identifikasi atribut-atribut inovatif layanan karaoke keluarga: Integrasi model NSD-EMF-Kano, Jurnal Tekno, 17(1), 14-25
  31. Sukwadi, R., & Susanto, I.D. (2018). Integrasi model Dineserv-CSI-IPA-Dematel dalam perbaikan kualitas layanan Bar XYZ. Jurnal Teknik & Ilmu Komputer, 7(26), 313-321
  32. Venkateswarlu, C., & Birru, A. K. (2012). Integrated Quality Function Deployement As a tool for quality achievement in healthcare. International Journal of Applied Industrial Engineering, 1(2), 80-92.
  33. Yrjölä, M., Rintamäki, T., Saarijärvi, H., Joensuu, J., & Kulkarni, G. (2019). A customer value perspective to service experiences in restaurants. Journal of Retailing and Consumer Services, 51, 91-101.

Last update:

No citation recorded.

Last update: 2023-09-29 15:22:49

No citation recorded.