skip to main content

Analysis of CaCO3 Impregnation on HY Zeolite Surface Area, Pore Size, and Activity in the Catalytic Cracking of Palm Oil to Biofuels

Rosyad Adrian Febriansyar orcid scopus  -  Department of Chemical Engineering, Universitas Diponegoro, Indonesia
Teguh Riyanto orcid scopus publons  -  Department of Chemical Engineering, Universitas Diponegoro, Indonesia
*I. Istadi orcid scopus publons  -  Department of Chemical Engineering, Universitas Diponegoro, Indonesia
Open Access Copyright (c) 2022 TEKNIK

Citation Format:
Abstract

Fossil energy sources are currently decreasing, requiring the development of alternative energy sources. Vegetable oil is a raw material for alternative renewable energy supplies. This study produced biofuels from vegetable oil using calcium carbonate (CaCO3)-impregnated HY catalysts. In addition, this study aimed to investigate the effect of CaCO3 impregnation on the surface area and the catalytic activity of catalysts in the palm oil cracking process to produce biofuels. The HY catalyst was modified by the wet impregnation method in 5 wt% CaCO3 solution and was further calcined at 550°C for three h. Furthermore, the catalysts were tested in a continuous fixed-bed catalytic reactor at 450°C. The catalyst properties were characterized using Brunauer–Emmett–Teller (BET) surface area, Barrett–Joyner–Halenda (BJH) for pore size distribution, and X-Ray Diffraction (XRD) for crystal structure and phases. The results showed that the addition of CaCO3 decreased surface area and pore volume; however, the pore size increased, which resulted in the production of heavy hydrocarbons. Interestingly, the introduction of CaCO3 enhanced the yield of Organic Liquid Product (OLP) and diesel-range hydrocarbons selectivity to reach 79.09% and 30.54%, respectively. Furthermore, the introduction of CaCO3 increased deoxygenation activity.

Fulltext View|Download
Keywords: catalyst activity; biofuel; calcium carbonate; deoxygenation

Article Metrics:

  1. Ahmad, M., Farhana, R., Raman, A. A. A., & Bhargava, S. K. (2016). Synthesis and activity evaluation of heterometallic nano oxides integrated ZSM-5 catalysts for palm oil cracking to produce biogasoline. Energy Conversion and Management, 119, 352–360. https://doi.org/10.1016/j.enconman.2016.04.069
  2. Amalia, R., Riyanto, T., & Istadi, I. (2021). Reactivation of the Spent Residue Fluid Catalytic Cracking (RFCC) Catalyst through Acid Treatment for Palm Oil Cracking to Biofuels. Teknik, 42(2), 218–225. https://doi.org/10.14710/teknik.v42i2.39642
  3. Asikin-Mijan, N., Lee, H. V., Juan, J. C., Noorsaadah, A. R., Abdulkareem-Alsultan, G., Arumugam, M., & Taufiq-Yap, Y. H. (2016). Waste clamshell-derived CaO supported Co and W catalysts for renewable fuels production via cracking-deoxygenation of triolein. Journal of Analytical and Applied Pyrolysis, 120, 110–120. https://doi.org/10.1016/j.jaap.2016.04.015
  4. Cheng, H., Zhang, J., Chen, Y., Zhang, W., Ji, R., Song, Y., Li, W., Bian, Y., Jiang, X., Xue, J., & Han, J. (2021). Hierarchical porous biochars with controlled pore structures derived from co-pyrolysis of potassium/calcium carbonate with cotton straw for efficient sorption of diethyl phthalate from aqueous solution. Bioresource Technology, 346(8), 126604. https://doi.org/10.1016/j.biortech.2021.126604
  5. Chireshe, F., Collard, F. X., & Görgens, J. F. (2020). Production of an upgraded bio-oil with minimal water content by catalytic Pyrolysis: Optimisation and comparison of CaO and MgO performances. Journal of Analytical and Applied Pyrolysis, 146(December 2019), 104751. https://doi.org/10.1016/j.jaap.2019.104751
  6. Da Silva Castro, L., Barañano, A. G., Pinheiro, C. J. G., Menini, L., & Pinheiro, P. F. (2019). Biodiesel production from cotton oil using heterogeneous CaO catalysts from eggshells prepared at different calcination temperatures. Green Processing and Synthesis, 8(1), 235–244. https://doi.org/10.1515/gps-2018-0076
  7. Doronin, V. P., Potapenko, O. V., Lipin, P. V., & Sorokina, T. P. (2013). Catalytic cracking of vegetable oils and vacuum gas oil. Fuel, 106, 757–765. https://doi.org/10.1016/j.fuel.2012.11.027
  8. Doyle, A. M., Albayati, T. M., Abbas, A. S., & Alismaeel, Z. T. (2016). Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renewable Energy, 97, 19–23. https://doi.org/10.1016/j.renene.2016.05.067
  9. Fathi, S., Sohrabi, M., & Falamaki, C. (2014). Improvement of HZSM-5 performance by alkaline treatments : Comparative catalytic study in the MTG reactions. FUEL, 116, 529–537. https://doi.org/10.1016/j.fuel.2013.08.036
  10. Ferrero, G. A., Sevilla, M., & Fuertes, A. B. (2015). Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors. Carbon, 88, 239–251. https://doi.org/10.1016/j.carbon.2015.03.014
  11. Friedrich, H., Jongh, P. E. De, Bulut, M., Donk, S. Van, Kenmogne, R., Finiels, A., Hulea, V., & Fajula, F. (2010). Zeolite Y Crystals with Trimodal Porosity as Ideal Hydrocracking. Angewandte Chemie International Edition, 49(52), 10074–10078. https://doi.org/10.1002/anie.201004360
  12. Hu, W., Wang, H., Lin, H., Zheng, Y., Ng, S., Shi, M., Zhao, Y., & Xu, R. (2019). Catalytic decomposition of oleic acid to fuels and chemicals: Roles of catalyst acidity and basicity on product distribution and reaction pathways. Catalysts, 9(12). https://doi.org/10.3390/catal9121063
  13. Istadi, I., Riyanto, T., Buchori, L., Anggoro, D. D., Gilbert, G., Meiranti, K. A., & Khofiyanida, E. (2020). Enhancing Brønsted and Lewis Acid Sites of the Utilized Spent RFCC Catalyst Waste for the Continuous Cracking Process of Palm Oil to Biofuels. Industrial and Engineering Chemistry Research, 59(20), 9459–9468. https://doi.org/10.1021/acs.iecr.0c01061
  14. Istadi, I., Riyanto, T., Buchori, L., Anggoro, D. D., Pakpahan, A. W. S., & Pakpahan, A. J. (2021). Biofuels Production from Catalytic Cracking of Palm Oil Using Modified HY Zeolite Catalysts over A Continuous Fixed Bed Catalytic Reactor. International Journal of Renewable Energy Development, 10(1), 149–156. https://doi.org/10.14170/ijred.2021.33281
  15. Jung, J. S., Kim, T. J., & Seo, G. (2004). Catalytic cracking of n-octane over zeolites with different pore structures and acidities. Korean Journal of Chemical Engineering, 21(4), 777–781. https://doi.org/10.1007/BF02705520
  16. Kesić, Ž., Lukić, I., Brkić, D., Rogan, J., Zdujić, M., Liu, H., & Skala, D. (2012). Mechanochemical preparation and characterization of CaO•ZnO used as catalyst for biodiesel synthesis. Applied Catalysis A: General Jo, 427–428, 58–65. https://doi.org/10.1016/j.apcata.2012.03.032
  17. Kianfar, E., Salimi, M., Pirouzfar, V., & Koohestani, B. B. (2018). Synthesis and modification of zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO3) and Sodium Carbonate (Na2CO3) for Methanol to Gasoline Conversion. International Journal of Chemical Reactor Engineering, 16(7), 1–7. https://doi.org/10.1515/ijcre-2017-0229
  18. Lesbani, A., Tamba, P., Mohadi, R., & Fahmariyanti. (2013). Preparation of calcium oxide from Achatina fulica as catalyst for production of biodiesel from waste cooking oil. Indonesian Journal of Chemistry, 13(2), 176–180. https://doi.org/10.22146/ijc.21302
  19. Li, S. C., Lin, Y. C., & Li, Y. P. (2021). Understanding the catalytic activity of microporous and mesoporous zeolites in cracking by experiments and simulations. Catalysts, 11(9), 1–13. https://doi.org/10.3390/catal11091114
  20. Li, T., Cheng, J., Huang, R., Yang, W., Zhou, J., & Cen, K. (2016). Hydrocracking of palm oil to jet biofuel over different zeolites. International Journal of Hydrogen Energy, 41(47), 21883–21887. https://doi.org/10.1016/j.ijhydene.2016.09.013
  21. Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles [Review-article]. Chemical Reviews, 118(10), 4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776
  22. Liu, Z., Shi, C., Wu, D., He, S., & Ren, B. (2016). A Simple Method of Preparation of High Silica Zeolite y and Its Performance in the Catalytic Cracking of Cumene. Journal of Nanotechnology, 2016. https://doi.org/10.1155/2016/1486107
  23. Ndayishimiye, P., & Tazerout, M. (2011). Use of palm oil-based biofuel in the internal combustion engines: Performance and emissions characteristics. Energy, 36(3), 1790–1796. https://doi.org/10.1016/j.energy.2010.12.046
  24. Nomura, K., & Terwilliger, P. (2019). Self-dual Leonard pairs Pyrolysis of palm oil using zeolite catalyst and characterization of the boil-oil. Green Process Synth, 8, 649–658
  25. Nurjannah, Roesyadi, A., & Prajitno, D. H. (2012). Konversi Katalitik Minyak Sawit Untuk Menghasilkan Biofuel Menggunakan Silika Alumina Dan HZSM-5 Sintesis. Reaktor, 13(1), 37–43. https://doi.org/10.14710/reaktor.13.1.37-43
  26. Pasupulety, N., Gunda, K., Liu, Y., Rempel, G. L., & Ng, F. T. T. (2013). Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts. Applied Catalysis A: General, 452, 189–202. https://doi.org/10.1016/j.apcata.2012.10.006
  27. Peng, X., Cheng, K., Kang, J., Gu, B., Yu, X., Zhang, Q., & Wang, Y. (2015). Impact of Hydrogenolysis on the Selectivity of the Fischer – Tropsch Synthesis : Diesel Fuel Production over Mesoporous Zeolite Y- Supported Cobalt Nanoparticles **. Heterogeneous Catalysis, 54, 1–5. https://doi.org/10.1002/anie.201411708
  28. Purnamasari, A. P., Sari, M. E. F., Kusumaningtyas, D. T., Suprapto, S., Hamid, A., & Prasetyoko, D. (2017). The effect of mesoporous H-ZSM-5 crystallinity as a CaO support on the transesterification of used cooking oil. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3), 329–336. https://doi.org/10.9767/bcrec.12.3.802.329-336
  29. Riyanto, T., Istadi, I., Buchori, L., Anggoro, D. D., & Dani Nandiyanto, A. B. (2020). Plasma-Assisted Catalytic Cracking as an Advanced Process for Vegetable Oils Conversion to Biofuels: A Mini Review. Industrial & Engineering Chemistry Research, 59(40), 17632–17652. https://doi.org/10.1021/acs.iecr.0c03253
  30. Riyanto, T., Istadi, I., Jongsomjit, B., Anggoro, D. D., Pratama, A. A., & Al Faris, M. A. (2021). Improved Brønsted to Lewis (B/L) Ratio of Co- and Mo-Impregnated ZSM-5 Catalysts for Palm Oil Conversion to Hydrocarbon-Rich Biofuels. Catalysts, 11(1286), 1–14
  31. Sharma, R., & Sheth, P. N. (2015). Thermo-Chemical Conversion of Jatropha Deoiled Cake : Pyrolysis vs. Gasification. International Journal of Chemical Engineering and Applications, 6(5), 376–380. https://doi.org/10.7763/IJCEA.2015.V6.513
  32. Thaoklua, R., Janjaroen, J., & Tedsree, K. (2018). The study of activity and selectivity of calcium oxide nanocatalyst for transesterification of high free fatty acid crude palm oil. Chiang Mai Journal of Science, 45(2), 973–983
  33. Tsai, W.-T. (2013). Microstructural characterization of calcite-based powder materials prepared by planetary ball milling. Materials, 6(8), 3361–3372. https://doi.org/10.3390/ma6083361
  34. Twaiq, F. A. A., Mohamad, A. R., & Bhatia, S. (2004). Performance of composite catalysts in palm oil cracking for the production of liquid fuels and chemicals. Fuel Processing Technology, 85(11), 1283–1300. https://doi.org/10.1016/j.fuproc.2003.08.003
  35. Verdoliva, V., Saviano, M., & De Luca, S. (2019). Zeolites as acid/basic solid catalysts: Recent synthetic developments. Catalysts, 9(3). https://doi.org/10.3390/catal9030248
  36. Wang, H., Rogers, K., Zhang, H., Li, G., Pu, J., Zheng, H., Lin, H., Zheng, Y., & Ng, S. (2019). The effects of catalyst support and temperature on the hydrotreating of waste cooking oil (WCO) over CoMo sulfided catalysts. Catalysts, 9(8). https://doi.org/10.3390/catal9080689
  37. Wang, X., Fang, Q., Wang, J., Gui, K., & Thomas, H. R. (2020). Effect of CaCO3on catalytic activity of Fe-Ce/Ti catalysts for NH3-SCR reaction. RSC Advances, 10(73), 44876–44883. https://doi.org/10.1039/d0ra07351b
  38. Weber, B., Stadlbauer, E. A., Stengl, S., Hossain, M., Frank, A., Steffens, D., Schlich, E., & Schilling, G. (2012). Production of hydrocarbons from fatty acids and animal fat in the presence of water and sodium carbonate: Reactor performance and fuel properties. Fuel, 94, 262–269. https://doi.org/10.1016/j.fuel.2011.08.040
  39. Yan, S., Lu, H., & Liang, B. (2008). Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production. Energy and Fuels, 22(1), 646–651. https://doi.org/10.1021/ef070105o
  40. Yi, L., Liu, H., Li, S., Li, M., Wang, G., Man, G., & Yao, H. (2019). Catalytic Pyrolysis of biomass wastes over Org-CaO/Nano-ZSM-5 to produce aromatics: Influence of catalyst properties. Bioresource Technology, 294(September), 122186. https://doi.org/10.1016/j.biortech.2019.122186
  41. Yigezu, Z. D., & Muthukumar, K. (2014). Catalytic cracking of vegetable oil with metal oxides for biofuel production. Energy Conversion and Management, 84, 326–333. https://doi.org/10.1016/j.enconman.2014.03.084
  42. Zhang, Q., Cheng, K., Kang, J., Deng, W., & Wang, Y. (2014). Fischer-tropsch catalysts for the production of hydrocarbon fuels with high selectivity. ChemSusChem, 7(5), 1251–1264. https://doi.org/10.1002/cssc.201300797
  43. Zhao, X., Wei, L., Cheng, S., Huang, Y., Yu, Y., & Julson, J. (2015). Catalytic cracking of camelina oil for hydrocarbon biofuel over ZSM-5-Zn catalyst. Fuel Processing Technology, 139, 117–126. https://doi.org/10.1016/j.fuproc.2015.07.033
  44. Zheng, Z., Lei, T., Wang, J., Wei, Y., Liu, X., Yu, F., & Ji, J. (2019). Catalytic cracking of soybean oil for biofuel over γ-Al2O3/CaO composite catalyst. Journal of the Brazilian Chemical Society, 30(2), 359–370. https://doi.org/10.21577/0103-5053.20180185
  45. Zheng, Z., Wang, J., Wei, Y., Liu, X., Yu, F., & Ji, J. (2019). Effect of La-Fe/Si-MCM-41 catalysts and CaO additive on catalytic cracking of soybean oil for biofuel with low aromatics. Journal of Analytical and Applied Pyrolysis, 143(18), 104693. https://doi.org/10.1016/j.jaap.2019.104693
  46. Zhou, X., & Chen, C. (2016). Strengthening and toughening mechanisms of amorphous/amorphous nanolaminates. International Journal of Plasticity, 80, 75–85. https://doi.org/10.1016/j.ijplas.2016.01.003
  47. Zul, N. A., Ganesan, S., Hamidon, T. S., Oh, W. Da, & Hussin, M. H. (2021). A review on the utilization of calcium oxide as a base catalyst in biodiesel production. Journal of Environmental Chemical Engineering, 9(4), 105741. https://doi.org/10.1016/j.jece.2021.105741

Last update:

No citation recorded.

Last update:

No citation recorded.