skip to main content

Deteksi Kavitasi Pompa Sentrifugal Menggunakan Metode Decision Trees Berbasis Sinyal Getaran

*Berli Paripurna Kamiel scopus  -  Program Studi Teknik Mesin, Indonesia
Muhammad Malik Nadziful Malik  -  Program Studi Teknik Mesin Fakultas Teknik, Universitas Muhammadiyah Yogyakarta, Indonesia
Krisdiyanto Krisdiyanto  -  Program Studi Teknik Mesin Fakultas Teknik, Universitas Muhammadiyah Yogyakarta, Indonesia
Open Access Copyright (c) 2021 TEKNIK

Citation Format:
Abstract

Pompa sentrifugal adalah sebuah mesin fluida yang banyak digunakan di dunia industri yang dalam penggunaannya kerap terjadi kavitasi. Kavitasi berdampak pada penurunan performa pompa sehingga dapat mengganggu proses produksi. Oleh karena itu dibutuhkan metode deteksi kavitasi yang efektif dan akurat. Pada umumnya deteksi kavitasi berbasis sinyal getaran menggunakan analisis spektrum. Namun demikian metode tersebut tidak efektif kerena menghasilkan spektrum yang kontinyu dan tersebar pada bentang frekuensi lebar. Hal ini menyebabkan deteksi kavitasi yang berdasarkan pada peak amplitudo frekuensi karakteristik menjadi sulit dilakukan. Penelitian ini bertujuan mengembangkan metode deteksi kavitasi melalui pendekatan machine learning dengan algoritma decision trees berbasis sinyal getaran. Tidak seperti pada analisis spektrum, metode deteksi ini lebih efektif karena berdasarkan pada klasifikasi pola sinyal getaran dan lebih mudah digunakan karena memberikan status kavitasi atau non-kavitasi secara langsung. Sinyal getaran direkam dari sebuah akselerometer yang diletakkan pada tutup impeler pompa sentrifugal pada sebuah rig uji sistem perpipaan loop tertutup. Sembilan parameter statistik diekstrak dari domain waktu sinyal getaran kemudian digunakan sebagai input decision trees. Hasil penelitian menunjukkan bahwa decision trees dengan menggunakan parameter statistik terpilih, efektif mendeteksi empat status kondisi pompa dengan tingkat akurasi mencapai 97,2% sedangkan dalam perspektif mendeteksi antara  kondisi non-kavitasi dan kavitasi akurasinya mencapai 100%.

Fulltext View|Download
Keywords: decision trees; machine learning; kavitasi; pompa sentrifugal; sinyal getaran

Article Metrics:

  1. Ahmed, H., & Nandi, A. K. (2020). Condition Monitoring With Vibration Signals Comprehensive Sampling And Learning Algorithms For Rotating Machines. John Wiley & Sons Ltd
  2. Al-Obaidi, & Ramadhan, A. (2020). Detection of Cavitation Phenomenon within a Centrifugal Pump Based on Vibration Analysis Technique in both Time and Frequency Domains. Experimental Techniques, 44(3), 329-347
  3. Al Tobi, M. A. S., & Al Sabari, M. H. J. (2016). Cavitation detection of centrifugal pump using Time-Domain method. International Journal of ENgineering Research and General Science, 4(5), 161-167
  4. Amarnath, M., Sugumaran, V., & Kumar, H. (2013). Exploiting sound signals for fault diagnosis of bearings using decision tree. Measurement, 46(3), 1250-1256
  5. Arockia Dhanraj, J., & Sugumaran, V. (2016). Wind Turbine Blade Fault Diagnosis Using Vibration Signals through Decision Tree Algorithm. Indian Journal of Science and Technology, 9
  6. Dong, L., Wu, K., Zhu, J.-c., Dai, C., Zhang, L.-x., & Guo, J.-n. (2019). Cavitation Detection in Centrifugal Pump Based on Interior Flow-Borne Noise Using WPD-PCA-RBF. Shock and Vibration, 2019, 8768043
  7. Golmoradi, M., Ebrahimi, E., & Javidan, M. (2017). Fault diagnosis of compressor based on decision tree and fuzzy inference system. Vibroengineering Procedia, 12, 54-60
  8. Gülich, J. F. (2010). Pump hydraulics and physical concepts. In Centrifugal pumps. Berlin, Heidelberg: Springer, 69-144
  9. Kale, A., R, J., & Sugumaran, V. (2013). Roller Bearing Fault Diagnosis by Decision Tree Algorithms with Statistical Feature. International Journal of Research in Mechanical Engineering, 1, 1-9
  10. Mohamed, W. N. H. W., Salleh, M. N. M., & Omar, A. H. (2012, 23-25 Nov. 2012). A comparative study of Reduced Error Pruning method in decision tree algorithms. Paper presented at the 2012 IEEE International Conference on Control System, Computing and Engineering
  11. Pan, S., Han, T., Tan, A. C. C., & Lin, T. R. (2016). Fault Diagnosis System of Induction Motors Based on Multiscale Entropy and Support Vector Machine with Mutual Information Algorithm. Shock and Vibration, 2016, 5836717
  12. Sakthivel, N. R., Sugumaran, V., & Babudevasenapati, S. (2010). Vibration based fault diagnosis of monoblock centrifugal pump using decision tree. Expert Systems with Applications, 37(6), 4040-4049
  13. Senanayaka, J. S. L., Khang, H. V., & Robbersmyr, K. G. (2017, 11-14 Aug. 2017). Towards online bearing fault detection using envelope analysis of vibration signal and decision tree classification algorithm. Paper presented at the 2017 20th International Conference on Electrical Machines and Systems (ICEMS)
  14. Sharma, A., Jigyasu, R., Mathew, L., & Chatterji, S. (2018, 11-12 May 2018). Bearing Fault Diagnosis Using Weighted K-Nearest Neighbor. Paper presented at the 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI)
  15. Siano, D., & Panza, M. A. (2018). Diagnostic method by using vibration analysis for pump fault detection. Energy Procedia, 148, 10-17
  16. Sreenath, P. G., Praveen Kumare, G., Pravin, S., Vikram, K. N., & Saimurugan, M. (2015). Automobile Gearbox Fault Diagnosis Using Naive Bayes and Decision Tree Algorithm. Applied Mechanics and Materials, 813-814, 943-948
  17. Zhang, N., Yang, M., Gao, B., & Li, Z. (2015). Vibration Characteristics Induced by Cavitation in a Centrifugal Pump with Slope Volute. Shock and Vibration, 2015, 294980

Last update:

  1. Application Of Decision Tree Algorithm In Classifying The Level Of Impulsivity In EEG Signals

    Yennimar, Dhanny Rukmana Manday, Anita Christine Sembiring, Nurima Lumbantoruan, Arico Sempana Ginting, Ruth Marsaulina Simanjuntak, Delima Sitanggang. 2024 2nd International Conference on Technology Innovation and Its Applications (ICTIIA), 2024. doi: 10.1109/ICTIIA61827.2024.10761187

Last update: 2025-01-21 09:57:24

No citation recorded.