skip to main content

The Analysis of Target Drone Wing Sweep Angle on Dynamic Stall Condition with Pitch Rate Variation using Computational Fluid Dynamics

*Muhammad Agung Bramantya  -  Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Kampus Teknik UGM, Yogyakarta, 55281, Indonesia
Gesang Nugroho  -  Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Kampus Teknik UGM, Yogyakarta, 55281, Indonesia
Open Access Copyright (c) 2025 TEKNIK

Citation Format:
Abstract

A target drone is a type of Unmanned Aerial Vehicle (UAV) with a special mission as a shooting target in the military field. Target drones must be able to fly at high speeds and be agile. This study discusses the influence of the wing sweep angle on the aerodynamic performance of a target drone during dynamic stall conditions. Banshee Whirlwind-like model is used as a research object in this study with the adjustment of the empennage design to a V-Tail configuration. Furthermore, the wing sweep angle was varied to determine its effect on dynamic stall conditions using Computational Fluid Dynamics (CFD) in transient conditions. The wing sweep angle variations used were 5°, 20°, 35°, and 50°, whereas the dynamic stall condition was varied using pitch rates of 3.6°/s, 6°/s, and 18°/s. The aerodynamic performance discussed relates to the lift force, drag force, efficiency, stall angle, lateral stability, and stall development phase. The results of this study indicate that a wing sweep angle of 50° is the most optimal design in terms of stall condition, stability, and maneuverability.

Fulltext View|Download
Keywords: target drone; wing sweep angle; pitch rate; CFD; transient

Article Metrics:

  1. Bramantya, M. A., Nugroho, G., & Dimas, R. (2017). Pengaruh Sudut Swept dan Sudut Incidence pada Sayap Pesawat Tanpa Awak dengan Simulasi Komputasi Dinamika Fluida
  2. Anderson, J. D. (1984). Fundamentals of Aerodynamics. https://api.semanticscholar.org/CorpusID:117923648
  3. Banu, T., Borlea, G. F., & Banu, C. (2016). The Use of Drones in Forestry. Journal of Environmental Science & Engineering, 5. https://api.semanticscholar.org/CorpusID:53615700
  4. CARR, L. (1985). Dynamic stall progress in analysis and prediction. In 12th Atmospheric Flight Mechanics Conference. American Institute of Aeronautics and Astronautics. https://doi.org/doi: 10.2514/6.1985-1769
  5. Carter, D., Burris, P., Brandt, S., & Anemaat, W. (2011). Fifth-Generation Target Drone Project Initial Development. In 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. American Institute of Aeronautics and Astronautics. https://doi.org/doi: 10.2514/6.2011-7011
  6. Choudhry, A., Leknys, R., Arjomandi, M., & Kelso, R. (2014). An insight into the dynamic stall lift characteristics. Experimental Thermal and Fluid Science, 58, 188–208. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2014.07.006
  7. Gundlach, J. G. (2011). Designing Unmanned Aircraft Systems: A Comprehensive Approach. https://api.semanticscholar.org/CorpusID:108831539
  8. Lan, C. E., & Roskam, J. H. (2016). Airplane Aerodynamics and Performance. https://api.semanticscholar.org/CorpusID:61127642
  9. Miller, C., & Chadwick, S. (2018). Military Unmanned Aerial Vehicles and Diversification Opportunities. https://doi.org/10.13140/RG.2.2.25777.02402
  10. Mukaarim, M. A. D. (2021). Perancangan Pesawat Tanpa Awak Berjenis Unmanned Aerial Target dan Simulasi Numerik Variasi Sudut Sweep pada Sayap terhadap Performa Aerodinamika [Skripsi, Universitas Gadjah Mada]. https://etd.repository.ugm.ac.id/penelitian/detail/201145
  11. Neves, A. F., Lawson, N. J., Bennett, C. J., Khanal, B., & Hoff, R. I. (2020). Unsteady aerodynamics analysis and modelling of a Slingsby Firefly aircraft: Detached-Eddy Simulation model and flight test validation. Aerospace Science and Technology, 106, 106179. https://doi.org/https://doi.org/10.1016/j.ast.2020.106179
  12. QinetiQ. (2020). The Banshee Whirlwind. https://www.qinetiq.com/en/what-we-do/services-and-products/banshee-whirlwind
  13. Sadraey, M. H. (2013). Aircraft design: a systems engineering approach
  14. Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics - the finite volume method. https://api.semanticscholar.org/CorpusID:29589033
  15. Visbal, M. R., & Benton, S. I. (2018). Exploration of High-Frequency Control of Dynamic Stall Using Large-Eddy Simulations. AIAA Journal, 56(8), 2974–2991. https://doi.org/10.2514/1.J056720
  16. Wang, W., Cao, S., Dang, N., Zhang, J., & Deguchi, Y. (2021). Study on dynamics of vortices in dynamic stall of a pitching airfoil using Lagrangian coherent structures. Aerospace Science and Technology, 113, 106706. https://doi.org/https://doi.org/10.1016/j.ast.2021.106706
  17. Wibowo, S., Sutrisno, I., & Rohmat, T. (2018). Study of Mesh Independence on the Computational Model of the Roll-up Vortex Phenomena on Fighter and Delta Wing Model. International Journal of Fluid Mechanics Research, 46. https://doi.org/10.1615/InterJFluidMechRes.2018025530
  18. Yen, S. C., & Hsu, C. M. (2006). Influence of Boundary Layer Behavior on Aerodynamic Coefficients of a Swept-Back Wing. Journal of Fluids Engineering, 129(6), 674–681. https://doi.org/10.1115/1.2734212
  19. Yen, S. C., & Huang, L. –C. (2009). Flow Patterns and Aerodynamic Performance of Unswept and Swept-Back Wings. Journal of Fluids Engineering, 131(11). https://doi.org/10.1115/1.4000260
  20. Zhou, L., Gao, Z., & Du, Y. (2019). Flow-dependent DDES/γ−Re‾θt coupling model for the simulation of separated transitional flow. Aerospace Science and Technology, 87, 389–403. https://doi.org/https://doi.org/10.1016/j.ast.2019.02.037
  21. Zhu, K., Bo, Y., Tao, D., & Wang, J. (2013). Route design of the target drone. 2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, 175–178. https://doi.org/10.1109/CYBER.2013.6705441

Last update:

No citation recorded.

Last update: 2025-09-30 05:21:13

No citation recorded.