skip to main content

Economic Analysis of the Preliminary Design of a Chemical Mini-Plant to Produce Palm Oil Based Estolide Calcium Sulfo-Ole Heavy -duty Bio grease with a Capacity of 36 Tons/Year

*Muhammad Luthfi  -  Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Jl. Dr. Indro S, Kukusan, Beji, Depok City, West Java, Indonesia 16424 | Universitas Indonesia, Indonesia
Sukirno Sukirno  -  Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Jl. Dr. Indro S, Kukusan, Beji, Depok City, West Java, Indonesia 16424 | Universitas Indonesia, Indonesia
Open Access Copyright (c) 2025 TEKNIK

Citation Format:
Abstract

The rapid growth of the automotive, manufacturing, and heavy-duty industries has increased lubricant demand, particularly lithium-based grease. However, due to supply constraints and rising costs, calcium is a more sustainable substitute for lithium in lubricants. This study develops heavy-duty bio grease based on palm oil estolide with calcium sulfo-oleate as a more economical and eco-friendlier alternative. The research adopts a pilot-scale approach with a 36 tons/year production capacity, aligned with Micro, Small, and Medium Enterprises (MSMEs). The product, heavy-duty bio grease Calcium Sulfo-Ole, uses Estolide Base Oil SAE 40 as the primary component. The process includes epoxidation, esterification, saponification, and formulation. Testing confirms that the ester-based oil has high viscosity and oxidative stability, making it suitable for NLGI 2 standard applications in heavy machinery. Economic analysis indicates strong viability, with a positive Net Present Value (NPV) of Rp1.3 billion over 10 years, Internal Rate of Return (IRR) of 13%, and Return on Investment (ROI) of 206%. The Break-Even Point (BEP) reached 83% capacity, proving feasibility. This bio grease reduces reliance on lithium-based lubricants while promoting sustainable, plant-based lubricants.

Fulltext View|Download
Keywords: calcium sulfo-oleate; economic analysis; estolide, heavy duty bio grease; MSMEs

Article Metrics:

  1. Abdulbari, H. A., & Zuhan, N. (2018). Grease formulation from palm oil industry wastes. Waste and Biomass Valorization, 9(12), 2447–2457. https://doi.org/10.1007/s12649-018-0237-6
  2. Abouelkasem, Z. A., Nassef, G. A., Abdelnaeem, M., & Nassef, M. G. A. (2024). Enhancing the elastohydrodynamic lubrication and vibration behavior of rolling bearings using a hybrid bio-grease blended with activated carbon nanoparticles. Tribology Letters, 72, 46. https://doi.org/10.1007/s11249-024-01847-3
  3. Adhvaryu, A., Erhan, S. Z., & Perez, J. M. (2004). Preparation of soybean oil-based greases: Effect of composition and structure on physical properties. Journal of Agricultural and Food Chemistry, 52(21). https://doi.org/10.1021/jf049888r
  4. Afrand, M., Najafabadi, K. N., & Akbari, M. (2016). Effects of temperature and solid volume fraction on viscosity of SiO₂-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Applied Thermal Engineering, 102, 45-54. http://dx.doi.org/10.1016/j.applthermaleng.2016.04.002
  5. Afriyanti, D., Kroeze, C., & Saad, A. (2016). Indonesia palm oil production without deforestation and peat conversion by 2050. Science of the Total Environment, 557–558, 562–570. http://dx.doi.org/10.1016/j.scitotenv.2016.03.032
  6. Agrawal, A., Karadbhajne, V., Bawa, S., Tiwari, R., & Murthy, S. S. (2022). Formulation of bio greases derived from mahua and karanja oil. Research Square. https://doi.org/10.21203/rs.3.rs-1802614/v1
  7. Allmaier, H. (2022). Increase service life for rail wheel bearings—A review of grease lubrication for this application. Lubricants, 10, 1-18. https://doi.org/10.3390/lubricants10030036
  8. Amin, A. A., Salah, H. M., & Kandile, N. G. (2023). Fabrication and evaluation of new multi-purpose grease using local raw materials. Egyptian Journal of Chemistry, 66(SI 13), 1033–1041. DOI: 10.21608/AJNSA.2022.156600.1627
  9. Annisa, N., & Widayat. (2018). A review of bio-lubricant production from vegetable oils using esterification transesterification process. MATEC Web of Conferences, 156, 06007. https://doi.org/10.1051/matecconf/201815606007
  10. Aries, R. S., & Newton, R. D. (1955). Chemical engineering series. McGraw-Hill
  11. Barriga, J., Aranzabe, A., & Galda, P. (2005). Sunflower based grease for heavy-duty applications. Mecánica Experimental, 13, 129–133. ISSN - 122 922
  12. Boner, C. J. (1937). Industrial & engineering chemistry. ACS Publications, 29(1), 58–60. https://doi.org/10.1021/ie50325a009
  13. Booser, E. R. (1983). CRC handbook of lubrication theory and practice of tribology (Vol. II: Theory and Design)
  14. BPS – Statistics Indonesia. (2024). Number of micro and small enterprise workers by regency/city in West Java. https://bps.go.id
  15. Castañeiras, P. D. R., Girma, D., Hailu, H. N., González, A. V., Pena, D. R., & Ortiz, J. M. G. (2017). Lubricant bio grease obtained from sugar cane filter cake vegetable oil in Ethiopia. International Journal of Scientific & Engineering Research, 8(11), 681–689. https://www.researchgate.net/ publication/329191165
  16. Center, N. (2011). Viscosity index improvers. Tribology & Lubrication Technology, 67(9), 10-12, 14-16, 18-20, 22
  17. Cohen, G., Murphy, C. M., O’Rear, J. G., Ravner, H., & Zisman, W. A. (1953). Aliphatic esters - properties and lubricant applications. Industrial & Engineering Chemistry, 45(8), 1766–1775. https://doi.org/10.1021/ie50524a043
  18. Danov, S. M., Kazantsec, O. A., Esipovich, A. L., Belousov, A. S., Rogohzin, A. E., & Kanakov, E. A. (2017). Recent advances in selective epoxidation of vegetable oils and derivatives: A review and perspective. Catalysis Science & Technology, 7, 3659-3675. https://doi.org/10.1039/C7CY00988G
  19. Derawi, D., & Salimon, J. (2016). Sintesis sebatian hidroksi-eter minyak sawit olein. Sains Malaysiana, 45(5), 817-823
  20. Dewi, R. A. P. (2012). Pembuatan gemuk bio kalsium sulfonat kompleks menggunakan base oil minyak sawit Tesis, Universitas Indonesia
  21. Diphare, M. J., Pilusa, J., Muzenda, E., & Mollagee, E. (2013). A review of waste lubricating grease management. 2nd International Conference on Environment, Agriculture and Food Sciences (ICEAFS'2013), Kuala Lumpur, Malaysia
  22. Ebisike, K., Daniel, B. E. A., Anakaa, M. N., Kefas, H. M., & Olusunle, S. O. O. (2016). Effect of sodium hydroxide thickener on grease production. American Chemical Science Journal, 13(3), 1-8. https://doi.org/10.9734/ACSJ/2016/20624
  23. Ekawati, S., Gayatri, B. R. R., Prakoso, P., & Chumaidi, A. (2020). Analisa ekonomi prarancangan pabrik kimia pembentukan biodiesel dari minyak biji randu (Ceiba pentandra) menggunakan katalis heterogen CaO dengan kapasitas 22.000 ton/tahun. Jurnal Teknologi Separasi, 6(2), 241-248. http://distilat.polinema.ac.id
  24. Government of the Republic of Indonesia. (2021). Government Regulation No. 36 of 2021 on Wages. https://peraturan.bpk.go.id/Details/161909/pp-no-36-tahun-2021
  25. Goyan, R. L., Melley, R. E., Wissner, P. A., & Ong, W. C. (1987). Biodegradable lubricants. Lubrication Engineering, 54(7), 10
  26. Habib, M. A. (2018). Modification of the recovered low-grade fat to formulate eco-friendly lubricant grease. Latin American Applied Research, 48, 69-74
  27. Hamnas, A., & Unnikrishnan, G. (2023). Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges – Review. Renewable and Sustainable Energy Reviews, 182, 113413. https://doi.org/10.1016/j.rser.2023.113413
  28. Hendra, M. P., Pradana, R. A., Masulili, A. N., & Wisudanto. (2024). Mengukur kinerja dan analisis kelayakan investasi ditinjau dari aspek finansial pada pengadaan truck mounted crane di kilang Sei Pakning. Jurnal Wicida, 28(1), 98–104
  29. Honary, L., & Richter, E. (2011). Biobased lubricants and greases: Technology and products. Wiley
  30. Hoong, S. S., Arniza, M. Z., Mariam, N. M. D. N. S., Armylisas, A. H. N., & Yeong, S. K. (2019). Synthesis and physicochemical properties of novel lauric acid capped estolide esters and amides made from oleic acid and their evaluations for biolubricant basestock. Industrial Crops and Products, 140, 111653. https://doi.org/10.1016/j.indcrop.2019.111653
  31. Hosein, I. D. (2021). The promise of calcium batteries: Open perspectives and fair comparisons. ACS Energy Letters, 6, 1560–1565. https://doi.org/10.1021/acsenergylett.1c00593
  32. Hu, C., Ai, J., Ma, L., Wen, P., Fan, M., Zhou, F., & Lu, W. (2021). Ester oils prepared from fully renewable resources and their lubricant base oil properties. ACS Omega, 6(25). https://doi.org/10.1021/acsomega.1c00808
  33. Jalil, M. J., Mohamed, N., Jamaludin, S. K., Som, A. M., & Daud, A. R. M. (2014). Epoxidation of palm kernel oil-based crude oleic acid. Advanced Materials Research, 906, 125–130. doi: 10.4028/www.scientific.net/AMR.906.125
  34. Japar, N. S. A., Aziz, M. A. A., & Razali, M. N. (2018). Fundamental study of waste oil potential as base oil alternative in grease formulation. CORE. https://core.ac.uk/download/pdf/186358742.pdf
  35. Ju, Y.-H., Sari, N. N. F., Go, A. W., Wang, M.-J., Agapay, R. C., & Ayucitra, A. (2020). Preparation of epoxidized fatty acid ethyl ester from tung oil as a bio-lubricant base-stock. Waste and Biomass Valorization, 11, 4145–4155. https://doi.org/10.1007/s12649-019-00738-4
  36. Kementerian Koperasi dan Usaha Kecil dan Menengah Republik Indonesia. (2021). Peraturan Menteri Koperasi dan UKM Nomor 11 Tahun 2021 tentang Pedoman Pengelompokan Usaha Mikro, Kecil, dan Menengah. https://peraturan.go.id
  37. Khan, S., Das, P., Quadir, M. A., Thaher, M., Annamalai, S. N., Mahata, C., Hawari, A. H., & Al Jabri, H. (2022). A comparative physicochemical property assessment and techno-economic analysis of biolubricants produced using chemical modification and additive-based routes. Science of The Total Environment, 847, 157648. https://doi.org/10.1016/j.scitotenv.2022.157648
  38. Kozdrach, R. (2024). Effect of thickener type on change the tribological and rheological characteristics of vegetable lubricants. Materials, 17(16), 3959. https://doi.org/10.3390/ma17163959
  39. Kurre, S. K., & Yadav, J. (2023). A review on bio-based feedstock, synthesis, and chemical modification to enhance tribological properties of biolubricants. Industrial Crops and Products, 193. https://doi.org/10.1016/j.indcrop.2022.116122
  40. Kusnarjo. (2010). Ekonomi teknik. ITS Press
  41. Lathi, P. S., & Mattiasson, B. (2007). Green approach for the preparation of biodegradable lubricant base stock from epoxidised vegetable oil. Applied Catalysis B: Environmental, 69, 207-212. https://doi.org/10.1016/j.apcatb.2006.06.016
  42. Lugt, P. M. (2016). Modern advancements in lubricating grease technology. Tribology International, 97, 467-477
  43. Ministry of Energy and Mineral Resources of the Republic of Indonesia. (2016, October 13). Regulation of the Minister of Energy and Mineral Resources of the Republic of Indonesia Number 28 of 2016 concerning Electricity Tariff Provided by PT Perusahaan Listrik Negara (Persero). Retrieved from. https://peraturan.bpk.go.id/ Details/141254/permen-esdm-no-28-tahun-2016
  44. Ministry of Industry of the Republic of Indonesia. (2023). Heavy equipment engineering competency standards. https://kemenperin.go.id
  45. Mohammed, A.H.A.K., & Al-Rubai, A. K. S. (2008). Viscosity index improvement of lubricating oil fraction (SAE–30). Iraqi Journal of Chemical and Petroleum Engineering, 9(3), 51–57
  46. Mortier, R. M., Fox, M. F., & Orszulik, S. T. (2011). Chemistry and technology of lubricants (3rd ed.). Springer
  47. MTU. (2012). Fluids and lubricants specifications. MTU. Friedrichshafen
  48. Niu, M., & Qu, J. (2018). Tribological properties of nano-graphite as an additive in mixed oil-based titanium complex grease. RSC Advances, 8(70), 42133–42144. DOI: 10.1039/c8ra08109c
  49. Nor, N. M., & Salimon, J. (2022). Synthesis of green-renewable biolubricant base stock from Malaysian palm oil. Malaysian Journal of Analytical Sciences, 26(3), 492–506
  50. Ob-eye, J., Chaiendoo, K., & Itthipilotapong, V. (2021). Catalytic conversion of epoxidized palm fatty acids through oxirane ring opening combined with esterification and the properties of palm oil-based biolubricants. Industrial & Engineering Chemistry Research, 60(44), 15989–15998. https://doi.org/10.1021/acs.iecr.1c03974
  51. Peters, M. S., & Timmerhaus, K. D. (1991). Plant design and economics for chemical engineers (4th ed.). McGraw-Hill
  52. Pirro, D. M., & Daschner, E. (2001). Lubrication fundamentals (2nd ed.). CRC Press
  53. Povkha, I. S., Povkh, Tonkonogov, B. P., Bagdasarova, L. N., Kolybelskyb, D. S., & Porfiryevb, Y. V. (2015). Dependence of properties of lithium complex greases based on synthetic base oils from the viscosity of dispersion medium and the composition of the thickener agent. Journal of Siberian Federal University, 8, 53–60
  54. Prasannakumar, P., Sankarannair, S., Prasad, G., & Shanmugam, R. (2025). Bio-based additives in lubricants: Addressing challenges and leveraging for improved performance toward sustainable lubrication. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-025-06563-z
  55. Rahman, N. W., Japar, N. S. A., Aziz, M. A. A., Razik, A. H. A., & Yunus, M. Y. M. (2019). Sodium grease formulation from waste engine oil. IOP Conference Series: Earth and Environmental Science, 257, 012018. https://doi.org/10.1088/1755-1315/257/1/012018
  56. Rahman, T., Arkeman, Y., Setyaningsih, D., & Saparita, R. (2024). Indonesian CPO availability analysis to support food and energy security: A system dynamic approach. International Conference on Biomass: Technology, Application, and Sustainable Development. IOP Publishing. https://doi.org/10.1088/1755-1315/65/1/012024
  57. Rani, H. A., Bonenehu, R. S., Mubarak, H. M. (2020). Financial feasibility study of batching plant investment on Sigli -Banda Aceh highway construction project. IOP Publishing. https://doi.org/10.1088/1757-899X/821/1/012012
  58. Razak, I. H. A., Ahmad, M. A., Abdullah, S. H., & Hazani, M. H. F. M. (2023). Rheological and tribological behaviors of bio grease based on palm ester thickened with calcium complex thickener. Jurnal Tribologi, 38, 100-117
  59. Ren, G., Zhang, P., Ye, X., Li, W., Fan, X., & Zhu, M. (2021). Comparative study on corrosion resistance and lubrication function of lithium complex grease and polyurea grease. Friction, 9(1), 75–90
  60. Saleem, M., Ali, M., & Saeed, A. (2024). Preparation of soap and detergents with potential use of biochemical methods. Recent Advances in Industrial Biochemistry, 433–446
  61. Salimon, J., Salih, N., & Yousif, E. (2011). Chemically modified biolubricant basestocks from epoxidized oleic acid: Improved low temperature properties and oxidative stability. Journal of Saudi Chemical Society, 15, 195-201. Jurnaltribologi.mytribos.org
  62. Salomonsson, L., Stang, G., & Zhmud, B. (2007). Oil/thickener interactions and rheology of lubricating greases. Tribology Transactions, 50(1). https://doi.org/10.1080/10402000701413471
  63. Sazzad, M. R. I., Rahman, M. M., Hassan, T., Rifat, A. A., Mamun, A. A., Adib, A. R., Meraz, R. M., & Ahmed, M. (2024). Advancing sustainable lubricating oil management: Re-refining techniques, market insights, innovative enhancements, and conversion to fuel. Heliyon, 10(4), e39248. https://doi.org/10.1016/j.heliyon.2024.e39248
  64. Sentanuhady, J., Majid, I., M., Prashida, W., Saputro, W., Gunawan, N.P., Raditya, T.Y., Muflikhun, M.A. (2020). Analysis of the Effect of Biodiesel B20 and B100 on the Degradation of Viscosity and Total Base Number of Lubricating Oil in Diesel Engines with Long-Term Operation Using ASTM D2896 and ASTM D445-06 Methods. TEKNIK. 41(3), 269-274, DOI: https://doi.org/10.14710/teknik.v41i3.32515
  65. Shah, R., & Precilla, A. M. (2024). Sustainable grease formulations: Evaluating key performance parameters and testing methodologies. Petro-Online
  66. Shah, R., Tung, S., Chen, R., & Miller, R. (2021). Grease performance requirements and future perspectives for electric and hybrid vehicle applications. Lubricants, 9(4), 40. https://doi.org/10.3390/lubricants9040040
  67. Sharma, B. K., Adhvaryu, A., Perez, J. M., & Erhan, S. (2006). Biobased grease with improved oxidation performance for industrial application. Journal of Agricultural and Food Chemistry, 54(20). https://doi.org/10.1021/jf061584c
  68. Sharma, U. C., & Singh, N. (2019). Bio greases for environment friendly lubrication. In B. R. Gurjar & S. Y. Rao (Eds.), Environmental Science and Engineering Vol. 1 Sustainable Development (pp. 305–317). Texas: Studium Press LLC
  69. Siskayanti, R., & Kosim, M. E. (2017). Analisis pengaruh bahan dasar terhadap indeks viskositas pelumas berbagai kekentalan. Jurnal Rekayasa Proses, 11(2), 94–100
  70. Siswanto, B. T. (2008). Teknik alat berat untuk SMK (Jilid 3). Direktorat Pembinaan Sekolah Menengah Kejuruan
  71. Soekartawi. (1995). Analisis usahatani. UI-Press
  72. Sofi, S. N. A. M., Aziz, M. A. A., Japar, N. S. A., Rahman, N. W. A., Abdulhalim, A. R., & Yunus, M. Y. M. (2019). Preparation and characterization of grease formulated from waste transformer oil. IOP Conference Series: Materials Science and Engineering, 702(1), 012034. https://doi.org/10.1088/1757-899X/702/1/012034
  73. Sonjaya, A. N., & Rahmasari, F. (2019). Pengujian pelumas bekas SAE 15W-40 API CI-4. Jurnal Teknologi, 7(1), 76-85. DOI: https://doi.org/10.31479/jtek.v7i1.33
  74. Stambaugh, R. L., & Kinker, B. G. (2011). Chemistry and technology of lubricants (3rd ed.). Springer
  75. Sukirno, & Fajar, R. (2024). Metode untuk memproduksi pelumas ramah lingkungan dan produk yang dihasilkan (Biolub SAE-30 dan SAE-40)
  76. Sukirno, R. F., Bismo, S., & Nasikin, M. (2009). Bio grease based on palm oil and lithium soap thickener: Evaluation of antiwear property. World Applied Sciences Journal, 3, 401–407. ISSN 1818-4952
  77. Sukirno, L., Rizqon, B., Bismo, S., & Nasikin, M. (2010). Formulation and performance of palm-grease using calcium soap. CIGR E-journal, 12, 1–10
  78. Sultana, N., Roddick, F., Gao, L., Guo, M., & Pramanik, B. K. (2022). Understanding the properties of fat, oil, and grease and their removal using grease interceptors. Water Research, 225. https://doi.org/10.1016/j.watres.2022.119141
  79. Susilowati, P. (2023). Pengaruh penambahan overbased calcium sulfonate terhadap gemuk kalsium oleat kompleks Tesis. Universitas Indonesia
  80. Totten, G. E. (2006). Handbook of lubrication and tribology (Vol. 1, 2nd ed.). CRC Press
  81. Turton, R., Bailie, R. C., Whiting, W. B., & Shaeiwitz, J. A. (2009). Analysis, synthesis, and design of chemical processes (3rd ed.). Pearson Education, Inc
  82. Wagiman, A. M. F., Jumali, M., & Sukardi. (2011). Efek perlakuan kimiawi dan hidrotermolisis pada biomas tanaman jagung (Zea mays L.) sebagai substrat produksi bioetanol. Agritech, 31(2), 146–152. DOI: https://doi.org/10.22146/agritech.9738
  83. Zahir, O. S. D. (2012). Penggunaan asam stearat dan asam oleat sebagai pengganti asam 12-hidroksistearat dalam pembuatan sabun sebagai thickener pada gemuk bio kalsium kompleks Tesis, Universitas Indonesia
  84. Zhornik, V. I., Zapolsky, A. V., Ivakhnik, A. V., & Parnitsky, A. M. (2021). Development of the method and optimization of the composition and modes of obtaining the biodegradable grease with the lithium-calcium thickener. Materials Science in Mechanical Engineering, 2, 60-72. https://doi.org/10.46864/1995-0470-2021-2-55-60-72

Last update:

No citation recorded.

Last update: 2025-11-20 02:57:12

No citation recorded.