skip to main content

Sintesis, Karakterisasi dan Pengujian Katalis CaO-MgO/Fe2O3 dari Dolomit dan Pasir Besi untuk Pembuatan Biodiesel dari Minyak Goreng Bekas

*Widayat Widayat scopus publons  -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50275, Indonesia
Mhd. Adithia Perdana Arman  -  Departemen Teknik Kimia, Universitas Diponegoro, Indonesia
Elijah Syarief  -  Departemen Teknik Kimia, Universitas Diponegoro, Indonesia
Luqman Buchori  -  Departemen Teknik Kimia, Universitas Diponegoro, Indonesia
Sulardjaka Sulardjaka  -  Departemen Teknik Mesin, Universitas Diponegoro, Indonesia
Open Access Copyright (c) 2024 TEKNIK

Citation Format:
Abstract

Pengembangan katalis CaO-MgO/Fe2O3 dari dolomit dan pasir besi dilakukan pada penelitian ini.  Penelitian bertujuan untuk mengetahui karakteristik kimia dan fisika katalis CaO-MgO/Fe2O3 serta kinerjapada produksi biodiesel. Sintesis katalis dilakukan dengan metode impregnasi, dimana fasa CaO-MgO terlebih dahulu didapatkan dari dolomit dengan metode kalsinasi. Fe2O3 dihasilkan dari pasir besi dengan metode ko-presipitasi yang melibatkan larutan asam dan basa. Pengaruh komposisi CaO-MgO dan Fe2O3 terhadap yield biodiesel dikaji dengan melakukan variasi rasio CaO-MgO : Fe2O3 sebesar 1:1, 2:1 dan 3:1. Variasi temperatur kalsinasi katalis dilakukan pada 800oC, 900oC dan 1000oC untuk mengetahui pengaruh karakteristik fisik terhadap produksi biodiesel. Karakterisasi katalis dengan menggunakan metode SEM-EDX menunjukkan struktur morfologi dan komposisi elemen pada katalis. Biodiesel yang diproduksi dengan katalis CaO-MgO/Fe2o3 memiliki standar mutu sesuai SNI 7182: 2015. Katalis dengan rasio CaO-MgO : Fe2O3 sebesar 3:1 yang dikalsinasi pada temperatur 900oC menghasilkan yield biodiesel tertinggi yaitu 54,2%. Katalis CaO-MgO/ Fe2O3 dapat digunakan dalam produksi biodiesel dengan reaksi esterifikasi dan trans esterifikassi secara simultan dan dibutuhkan peningkatan kinerja lebih lanjut sehingga lebih ekonomis.

Fulltext View|Download
Keywords: dolomit; pasir besi; katalis heterogen; biodiesel

Article Metrics:

  1. Ajala, E. O., Ajala, M. A., Okedere, O. B., Aberuagba, F., & Awoyemi, V. (2021). Synthesis of solid catalyst from natural calcite for biodiesel production: Case study of palm kernel oil in an optimization study using definitive screening design. Biofuels, 12(6), 703–714. https://doi.org/10.1080/17597269.2018.1532752
  2. Ali, O. M., Mamat, R., Rasul M. G., & Najafi, G. (2017). Potential of biodiesel as fuel for diesel engine. Clean Energy for Sustainable Development, Academic Press, 557-590. https://doi.org/10.1016/B978-0-12-805423-9.00018-1
  3. Badapalli, P. K., Kottala, R. B., Sree, P. P., & Rajasekhar, M. (2021). Occurrence and structures of dolomites in North Eastern part of Anantapur district, and their use in engineering materials. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.07.335
  4. Bruhl, L. (2014). Fatty acid alterations in oils and fats during heating and frying. European Journal of Lipid Science and Technology, 116(6), 707–715. https://doi.org/10.1002/ejlt.201300273
  5. Cano, M., Sbargoud, K., Allard, E., & Larpent, C. (2012). Magnetic separation of fatty acids with iron oxides nanoparticles and application to extractive deacidification of vegetable oils. Green Chemistry, 14, 1786-1795. https://doi.org/10.1039/C2GC35270B
  6. Chen, J., Zhu, L., Xiang, Y., & Xia, D. (2020). Effect of Calcination Temperature on Structural Properties and Catalytic Performance of Novel Amorphous NiP/Hβ Catalyst for n-Hexane Isomerization. Catalysts, 10(7), 811. https://doi.org/10.3390/catal10070811
  7. Correia, L., Cecilia, J A., Enrique, R., Calvancante, C L., & Vieira, R S. (2017). Relevance of the Physicochemical Properties of Calcined Quail Eggshell (CaO) as a Catalyst for Biodiesel Production. Journal of Chemistry. https://doi.org/10.1155/2017/5679512
  8. Ezzah-Mahmudah, S., Lokman, I. M., Saiman, M. I., & Taufiq-Yap, Y. H. (2016). Synthesis and characterization of Fe2O3/CaO derived from Anadara Granosa for methyl ester production. Energy Conversion and Management, 126, 124-131. https://doi.org/10.1016/j.enconman.2016.07.072
  9. Fan, M., Liu, Y., Zhang, P., Jiang, P. (2016). Blocky shapes Ca-Mg mixed oxides as a water-resistant catalyst for effective synthesis of biodiesel by transesterification. Fuel Processing Technology, 149, 163-168
  10. Huang, J., Zou, Y., Yaseen, M., Qu, H., He, R., & Tong, Z. (2021). Fabrication of hollow cage-like CaO catalyst for the enhanced biodiesel production via transesterification of soybean oil and methanol. Fuel, 290, 119799. https://doi.org/10.1016/J.FUEL.2020.119799
  11. Ilgen, O. (2010). Dolomite as a heterogeneous catalyst for transesterification of canola oil. Fuel Processing Technology, 92(3), 452-455. https://doi.org/10.1016/j.fuproc.2010.10.009
  12. Jaiyen, S., Naree, T., & Ngamcharussrivichai, C. (2015). Comparative study of natural dolomitic rock and waste mixed seashells as heterogeneous catalysts for the methanolysis of palm oil to biodiesel. Renewable Energy, 74, 433-440, https://doi.org/10.1016/j.renene.2014.08.050
  13. Jindapon, W. & Ngamcharussrivichai, C. (2018). Heterogeneously catalyzed transesterification of palm oil with methanol to produce biodiesel over calcined dolomite: The role of magnesium oxide. Energy Conversion and Management, 171, 1311-1321. https://doi.org/10.1016/j.enconman.2018.06.068
  14. Laca, A., Laca, A., & Díaz, M. (2017). Eggshell waste as catalyst: A review. Journal of Environmental Management, 197, 351–359. https://doi.org/10.1016/J.JENVMAN.2017.03.088
  15. Laskar, I.B., Rajkumari, K., Gupta, R., Chatterjee, S., Paul, B., & Rokhum, L. (2018). Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. Royal Society of Chemistry, 8, 20131-20142. https://doi.org/10.1039/C8RA02397B
  16. Liu, C., L.V., Pengmei. Yuan, Z., F. Yan, & W. Luo. (2010). The Nanometer Magnetic Solid Base Catalyst for Production of Biodiesel. Renewable Energy, 15, 1531-1536. https://doi.org/10.1016/j.renene.2009.10.009
  17. Mulyatun, M., Prameswari, J., Istadi, I., & Widayat, W.(2022). Production of non-food feedstock based biodiesel using acid-base bifunctional heterogeneous catalysts: A review. Fuel, 340, 122749. https://doi.org/10.1016/j.fuel.2021.122749
  18. Murguía-Ortiz, D., Cordova, I., Manriquez, M. E., Ortiz-Islas, E., Cabrera-Sierra, R., Contreras, J. L., Alcántar-Vázquez, B., Trejo-Rubio, M., Vázquez-Rodríguez, J. T., & Castro, L. v. (2021). Na-CaO/MgO dolomites used as heterogeneous catalysts in canola oil transesterification for biodiesel production. Materials Letters, 291, 129587. https://doi.org/10.1016/J.MATLET.2021.129587
  19. Prameswari, J., Widayat, W., Buchori, L., & Hadiyanto, H. (2023). Novel iron sand-derived α-Fe2O3/CaO2 bifunctional catalyst for waste cooking oil-based biodiesel production. Environmental Science and Pollution Research, 30, 98832-98847. https://doi.org/10.1007/s11356-022-21942-z
  20. Rahimi, T., Kahrizi, D., Feyzi, M., Ahmadvandi, H. R., & Mostafaei, M. (2021). Catalytic performance of MgO /Fe2O3-SiO2 core-shell magnetic nanocatalyst for biodiesel production of Camelina sativa seed oil: Optimization by RSM-CCD method. Industrial Crops and Products, 159. https://doi.org/10.1016/j.indcrop.2020.113065
  21. Satriadi, H., Isdayana Yogi Pratiwi, Malikhatul Khuriyah, Widayat , Hadiyanto , Jedy Prameswari, (2021), Geothermal solid waste derived Ni/Zeolite catalyst for waste cooking oil processing, Chemosphere Volume 286, Part 1, January 2022, 131618 https://doi.org/10.1016/j.chemosphere.2021.131618
  22. Simpen, N., Winaya, IN. S., Subagia, ID. G. A., & Suyasa, IW. B. (2020). Solid Catalyst in Esterification and Transesterification Reactions for Biodiesel Production: A Review. International Journal of Engineering and Emerging Technology, 5(2), 168–174. https://doi.org/10.24843/IJEET.2020.V05.I02.P29
  23. Sirisomboonchai, S., Abuduwayiti, M., Guan, G., Samart, C., Abliz, S., Hao, X., Kusakabe, K., & Abudula, A., (2015). Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Conversion and Management, 95, 242-247. https://doi.org/10.1016/j.enconman.2015.02.044
  24. Tamaddon, F., Tayefi, M., Hosseini, E., & Zare, E. (2013). Dolomite (CaMg(CO3)2) as a recyclable natural catalyst in Henry, Knoevenagel, and Michael reactions. Journal of Molecular Catalysis A: Chemical, 366, 36–42. https://doi.org/10.1016/J.MOLCATA.2012.08.027
  25. Thangaraj, B., Solomon, P. R., Muniyandi, B., Ranganathan, S., & Lin, L. (2019). Catalysis in Biodiesel Production-A Review. Clean Energy, 3(1), 2-23. https://doi.org/10.1093/ce/zky020
  26. Teo, S. H., Rashid, U., Choong, S. Y. T., & Taufiq-Yap, Y. H. (2017). Heterogeneous calcium-based bimetallic oxide catalyzed transesterification of Elaeis guineensis derived triglycerides for biodiesel production. Energy Conversion and Management, 141, 20-27. https://doi.org/10.1016/j.enconman.2016.03.042
  27. Widayat, W., Putra, D. A., & Nursafitri, I. (2019). Preparation of α-Fe2O3-Al2O3 Catalysts and Catalytic Testing for Biodiesel Production. Materials Today: Proceedings, 13, 97–102. https://doi.org/10.1016/J.MATPR.2019.03.195
  28. Widayat, T Darmawan, H Hadiyanto and R Ar Rosyid, (2017), Preparation of Heterogeneous CaO Catalysts for Biodiesel Production, Journal of Physics: Conference Series, Volume 877, International Conference on Energy Sciences (ICES 2016) 25–27 July 2016, Bandung, Indonesia
  29. Xia, S., Li, J., Chen, G., Tao, J., Li, W., & Zhu, G. (2022). Magnetic reusable acid-base bifunctional Co doped Fe2O3–CaO nanocatalysts for biodiesel production from soybean oil and waste frying oil. Renewable Energy, 189, 421–434. https://doi.org/10.1016/j.renene.2022.02.122
  30. Xiao, Z., Li, P., Zhang, S., Gu, J., & Wang, D. (2023). Effects of Metal-Support Interactions and Interfaces on Catalytic Performance over M2O3- (, Al-) Supported Ni Catalysts. International Journal of Energy Research. https://doi.org/10.1155/2023/6504914
  31. Zul, N. A., Ganesan, S., Hamidon, T. S., Oh, Wen-Da, & Hussin, M. H. (2021). A review on the utilization of calcium oxide as a base catalyst in biodiesel production. Journal of Environmental Chemical Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105741

Last update:

No citation recorded.

Last update: 2024-12-27 07:59:55

No citation recorded.