skip to main content

Slope Stability Analysis for Slope Geometry Evaluation Using RMR, SMR, and Morgenstern-Price Methods in Pits C2 and C4 of PT Menara Cipta Mulia Mayang Block Open Pit Tin Mine, East Belitung Regency, Bangka Belitung Islands

Analisis Kestabilan Lereng untuk Evaluasi Geometri Lereng Menggunakan Metode RMR, SMR, dan Morgenstern-Price pada Pit C2 dan C4 Tambang Timah Terbuka Blok Mayang PT Menara Cipta Mulia, Kabupaten Belitung Timur, Kepulauan Bangka Belitung

Zulfa Nindya Salsabila  -  Department of Geological Engineering, Universitas Diponegoro, Indonesia
*Thomas Triadi Putranto  -  Department of Geological Engineering, Universitas Diponegoro, Indonesia
Najib Najib  -  Department of Geological Engineering, Universitas Diponegoro, Indonesia
Open Access Copyright (c) 2023 TEKNIK

Citation Format:
Abstract

Tin mining activities using an open pit mining system can affect slope stability and increase landslide risk. Slope stability analysis needs to be done to minimize the occurrence of landslides. This study aimed to determine engineering geological settings, and rock mass conditions, find slope safety factor values, as well as provide slope geometry recommendations according to the minimum Safety Factor (SF)  value criteria ≥1,25. The research area is an area with complex materials, so in this study slope stability analysis was carried out by combining rock mass classification methods through Rock Mass Rating (RMR) and Slope Mass Rating (SMR), and calculating the value of the Safety Factor (SF) using the Morgenstern-Price method with the Generalized Hoek-Brown and Mohr-Coulomb failure criteria. The analysis results obtained three geological engineering zones: meta sandstone- meta claystone, silty sandstone, and sandy claystone. The condition of the rock mass according to the RMR value, is in the moderate to good class. It has an SMR value of partially stable stability. Areas with the potential for landslides, namely STA 2 on sections B-B' with toppling type, STA 3 on sections C-C' and STA 4 on sections D-D'  with wedge type. According to the SF value, there are two unstable slopes during partially saturated conditions: sections A-A' and B-B'. The recommended slope geometry is with a minimum width of 2/3 of the height, where in partially saturated conditions, the slope has a single angle of  35 - 400, 5 m high, with an overall slope angle of 320 and 16 m high. In dry conditions, a single slope angle of 550, 6 m high with all slope angles of 370 and 15 m high.

Fulltext View|Download
Keywords: engineering geology; open-pit mining; rock mass; slope stability; slope optimization

Article Metrics:

  1. Alfaiz, M.N, dan Wilopo, W. 2019. Pengaruh Alterasi Hidrotermal terhadap Kejadian Longsor di Daerah Pasirpanjang, Kecamatan Salem, Kabupaten Brebes, Provinsi Jawa Tengah. Prosiding Seminar Nasional Kebumian XII, 630-640
  2. Ali, R. K., Najib, N., dan Nasrudin, A. 2017. Analisis Peningkatan Faktor Keamanan Lereng Pada Areal Bekas Tambang Pasir Dan Batu di Desa Ngablak, Kecamatan Cluwak, Kabupaten Pati. Promine Journal, 5 (1)
  3. Anbalagan, R., Sharma, S., dan Raghuvanshi, T. 1992. Rock mass stability evaluation using modified SMR approach. Proceedings of 6th National Symposium on Rock Mechanics, 68-258. Diambil dari https://doi.org/10.1016/0013-7952(92)90053-2. (Kementerian Pekerjaan Umum, 2017)
  4. Bargawa, W. S. 2014. Kajian Lingkungan Hidup Strategis Sektor Pertambangan Studi Kasus Pertambangan Batuan Basalt Di Kabupaten Banyumas. Prosiding Seminar Nasional Kebumian IX Tahun 2014 UPN Veteran Yogyakarta, 1-13. ISSN 978-602-8461-29-0
  5. Bieniawski, Z.T. 1989. Engineering Rock Mass Classifications: A Complete Manual For Engineers And Geologists In Mining, Civil, And Petroleum Engineering, 51-62. New York: John Wiley & Sons
  6. Frans, J. S., dan Nurfalaq, M. H. 2019. Studi Geoteknik Pengaruh Muka Air Tanah Terhadap Kestabilan Lereng Tambang Batubara. Indonesian Mining Professionals Journal, 1, 12-21
  7. Hoek, E., Carranza-Torres, C., dan Corkum, B. 2002. Hoek-Brown failure criterion 2002 edition. Proceedings of NARMS-Tac, 1 (1), 267-273
  8. Kuswardani, I. F., dan Anggraini, Y. I. 2021. Revisi UU Minerba sebagai Tonggak Baru Pertumbuhan Ekonomi Bangsa. Jurnal Teknologi Sumberdaya Mineral,2(1),1-6. https://doi.org/
  9. 19184/jeneral.v2i1.25880
  10. Metriani, R., Anaperta, Y. M., dan Saldy, T. G. 2019. Analisis Balik Kestabilan Lereng Dengan Menggunakan Metode Bishop yang disederhanakan Pada Front II Existing Tambang Quarry PT. Semen Padang, Sumatera Barat. Bina Tambang, 44
  11. Pamuji, A. F., Sophian, R. I., dan Muslim, D. 2018. Pengaruh Geological Strength Index GSI Terhadap Nilai Faktor Keamanan Melalui Simulasi Kestabilan Lereng Tambang, Kecamatan Batu Kajang, Kabupaten Paser, Kalimantan Timur. Padjadjaran Geoscience Journal 2(6), 487-497.ISSN:2597-4033
  12. Ridwan, M., Hasan, H., Winarno, A., Oktaviani, R., dan Trides, T. 2022. Penentuan Kelas Massa Batuan dengan Klasifikasi Rock Mass Rating (RMR) dan Slope Mass Rating (SMR) Pada Formasi Balikpapan dan Pulau Balang di Kota Samarinda. Jurnal Teknologi Mineral FT UNMUL, 10(2), 12-17
  13. Rochmanto, B., dan Stefano A. F. 2012. Karakteristik Morfologi Pantai Malusetasi Berdasarkan Data Spasial Kabupaten Barru Provinsi Sulawesi Selatan, 2-8. ISBN: 978-979-127255-0-6
  14. Romana, M. 1985. New adjustment ratings for application of Bieniawski classification to slopes. Proceedings of the International Symposium on the Role of Rock Mechanics in Excavations for Mining and Civil Works, 49-53
  15. Salim, M. 2022. Geologi dan Studi Porositas serta Permeabilitas Batuan Terhadap Kestabilan Lereng Highwall-Lowwall Tambang Terbuka, Desa Mangkalapi, Kecamatan Teluk Kepayang, Kabupaten Tanah Bumbu, Provinsi Kalimantan Selatan. (Disertasi). Universitas Pembangunan Nasional Veteran, Yogyakarta
  16. Saptono, S. 2019. Sistem Klasifikasi Massa Batuan untuk Tambang Terbuka. Yogyakarta: UPN Veteran Yogyakarta. ISBN 978-623-7594-11
  17. Saptono, S., Yulianto, M. R., Vergiagara, V., dan Sofyan, H. 2020. Rock Mass Rating and Geological Strength Index of Rock Masses of Indonesia Coal Mining Areas. Seminar Nasional Informatika, 1(1), 415-426
  18. Saputra, R. A., dan Heriyadi, B. 2019. Analisis Klasifikasi Massa Batuan dan Potensi Longsor pada Area Pit Timur Tambang Terbuka PT. Allied Indo Coal Jaya, Kota Sawalunto, Sumatera Barat. Bina Tambang, 4(3), 207-217
  19. Tiambunan, D., Irvani, I., dan Fahraini, F. 2020. Analisa Kestabilan Lereng Menggunakan Metode Fellenius Secara Manual dan Software Slide Rocscience 6.0 Studi Kasus: TB 1.42 Pemali PT Timah Persero Tbk. Mineral,31,39-49.Diambil dari https://doi.org
  20. /10.33019/mineral.v 3i1.1575
  21. Waskita, A. D., Febriadi, A., Rampan, R., Oktavianto, H., dan Patmo, N. 2020. Analisis Kestabilan Lereng Batuan Lunak dengan Model Material Validated Transition pada Rancangan PIT Wara 2020 PT Adaro Indonesia. Prosiding Temu Profesi Tahunan PERHAPI, 865-874. Diambil dari https://prosiding.perhapi.or.id/index.php/prosiding/article/view/221
  22. Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology,30(5),377-392. http://www.jstor.org
  23. /stable/10.2307/30063207

Last update:

No citation recorded.

Last update: 2025-01-15 03:22:11

No citation recorded.