skip to main content

Study of Machining Strategies for CNC Milling of Foot Prosthetic Using Taguchi Methodology

*Wahyu Dwi Lestari orcid scopus  -  Department of Mechanical Engineering, Faculty of Engineering, University of Pembangunan Nasional "Veteran" Jawa Timur, Indonesia
Ndaru Adyono  -  Department of Mechanical Engineering, Faculty of Engineering, University of Pembangunan Nasional "Veteran" Jawa Timur, Indonesia
Ahmad Khairul Faizin  -  Department of Mechanical Engineering, Faculty of Engineering, University of Pembangunan Nasional "Veteran" Jawa Timur, Indonesia
Kadek Heri Sanjaya  -  Research Centre for Smart Mechatronics, Research Organisation for Electronics and Informatics, , Indonesia
Open Access Copyright (c) 2023 TEKNIK

Citation Format:

The use of CNC milling machines in the industrial sector greatly contributes to the production of high-quality products that align with consumers' desired shapes. Currently, the precise machining parameters for manufacturing a product are determined through a time-consuming and costly process of trial and error. Most prior significant studies have examined the variables that can impact the duration of machining time. However, different machining conditions require different control factors. The key objective of this study is to enhance the machining parameters and identify the crucial factors that influence the duration of machining in the production of foot prostheses. The experiment was conducted using a 3-axis CNC milling machine with five machine parameters: spindle speed, feed rate, step over, depth of cut, and toolpath strategy. The Taguchi method with orthogonal array L2735 was chosen as an optimization method. The optimum machine parameters are analyzed using signal-to-noise (S/N) ratio and ANOVA. The analysis shows that spindle speed is the most influential variable on machine time. The next factor is the depth of cut, feed rate, and toolpath strategy, and the last is step over.

Fulltext View|Download
Keywords: ANOVA; machining time; Taguchi method; signal to noise; foot prosthetic
Funding: LPPM UPN Veteran Jawa Timur

Article Metrics:

  1. Adam Khan, M., and Kapil Gupta. (2021). Optimization of Machining Parameters for Material Removal Rate and Machining Time While Cutting Inconel 600 with Tungsten Carbide Textured Tools. Springer International Publishing
  2. Alsaadi, Naif, and Muhammad Abdullah Sheeraz. (2020). Design and Optimization of Bimorph Energy Harvester Based on Taguchi and ANOVA Approaches. Alexandria Engineering Journal 59(1):117–27. doi: 10.1016/j.aej.2019.12.016
  3. Camposeco-Negrete, Carmita, and Juan de Dios Calderón-Nájera. (2019). Optimization of Energy Consumption and Surface Roughness in Slot Milling of AISI 6061 T6 Using the Response Surface Method. International Journal of Advanced Manufacturing Technology 103(9–12):4063–69. doi: 10.1007/s00170-019-03848-2
  4. Chen, Xingzheng, Congbo Li, Ying Tang, Li Li, Yanbin Du, and Lingling Li. (2019). Integrated Optimization of Cutting Tool and Cutting Parameters in Face Milling for Minimizing Energy Footprint and Production Time. Energy 175:1021–37. doi: 10.1016/
  5. F. Rabiei, S. Yaghoubi. (2023). A Comprehensive Investigation on the Influences of Optimal CNC Wood Machining Variables on Surface Quality and Process Time Using GMDH Neural Network and Bees Optimization Algorithm. Materials Today Communications 36
  6. Feng, Yixuan, Yu Ting Lu, Yu Fu Lin, Tsung Pin Hung, Fu Chuan Hsu, Chiu Feng Lin, Ying Cheng Lu, and Steven Y. Liang. (2018). Inverse Analysis of the Cutting Force in Laser-Assisted Milling on Inconel 718. International Journal of Advanced Manufacturing Technology 96(1–4):905–14. doi: 10.1007/s00170-018-1670-1
  7. Fratila, Domnita, and Cristian Caizar. (2011). Application of Taguchi Method to Selection of Optimal Lubrication and Cutting Conditions in Face Milling of AlMg3. Journal of Cleaner Production 19(6–7):640–45. doi: 10.1016/j.jclepro.2010.12.007
  8. Gutema, Endalkachew Mosisa, Mahesh Gopal, and Hirpa G. Lemu. (2022). Minimization of Surface Roughness and Temperature during Turning of Aluminum 6061 Using Response Surface Methodology and Desirability Function Analysis. Materials 15(21):7638. doi: 10.3390/ma15217638
  9. Hoang, Tien Dung, Nhu Tung Nguyen, Đuc Quy Tran, and Nguyen Van Thien. (2019). Cutting Forces and Surface Roughness in Face-Milling of SKD61 Hard Steel. Strojniski Vestnik/Journal of Mechanical Engineering 65(6):375–85. doi: 10.5545/sv-jme.2019.6057
  10. Khan, Shahbaz, Muhammad Shahiq, and Muhammad Zahid Iqbal. (2023). Shock Absorption Capability of Corrugated Ring Yield Mount Subjected to High Impact Loading. Heliyon 9(6):e16534. doi: 10.1016/j.heliyon.2023.e16534
  11. Khentout, A., Kezzar, M., Khochemane, L. (2002).Taguchi Optimization and Experimental Investigation of the Penetration Rate of Compact Polycrystalline Diamond Drilling Bits in Calcareous Rocks. International Journal of Technology 23(4):1–16
  12. Liu, Yanhe, Jianbo Zhou, Wansi Fu, Bin Zhang, Feihu Chang, and Pengfei Jiang. (2021). Study on the Effect of Cutting Parameters on Bamboo Surface Quality Using Response Surface Methodology. Measurement: Journal of the International Measurement Confederation 174. doi: 10.1016/j.measurement.2021.109002
  13. Lu, Xiaohong, Zhenyuan Jia, Hua Wang, Yixuan Feng, and Steven Y. Liang. (2019). The Effect of Cutting Parameters on Micro-Hardness and the Prediction of Vickers Hardness Based on a Response Surface Methodology for Micro-Milling Inconel 718. Measurement: Journal of the International Measurement Confederation 140:56–62. doi: 10.1016/j.measurement.2019.03.037
  14. Maiyar, Lohithaksha M., R. Ramanujam, K. Venkatesan, and J. Jerald. (2013). Optimization of Machining Parameters for End Milling of Inconel 718 Super Alloy Using Taguchi Based Grey Relational Analysis. Procedia Engineering 64(December):1276–82. doi: 10.1016/j.proeng.2013.09.208
  15. Ming, Wuyi, Xudong Guo, Guojun Zhang, Shunchang Hu, Zhen Liu, Zhuobin Xie, Shengfei Zhang, and Liuyang Duan. (2023). Optimization of Process Parameters and Performance for Machining Inconel 718 in Renewable Dielectrics. Alexandria Engineering Journal 79(January):164–79. doi: 10.1016/j.aej.2023.07.075
  16. N.J. Rathod, M.K. Chopra, U.S. Vidhate, N.B. Gurule, U. V. Saindane d. (2021). Investigation on the Turning Process Parameters for Tool Life and Production Time Using Taguchi Analysis. Pp. 5830–35 in Materials Today: Proceedings
  17. Nisar, Lubaid, Bazeela Banday, Mouminah Amatullah, Munazah Farooq, Aasif Nazir Thoker, Annayath Maqbool, and Mohd Atif Wahid. (2020). An Investigation on Effect of Process Parameters on Surface Roughness and Dimensional Inaccuracy Using Grey Based Taguchi Method. Materials Today: Proceedings 46(April):6564–69. doi: 10.1016/j.matpr.2021.04.040
  18. Qasim, Arsalan, Salman Nisar, Aqueel Shah, Muhammad Saeed Khalid, and Mohammed A. Sheikh. (2015). Optimization of Process Parameters for Machining of AISI-1045 Steel Using Taguchi Design and ANOVA. Simulation Modelling Practice and Theory 59:36–51. doi: 10.1016/j.simpat.2015.08.004
  19. Razavykia, Abbas, Noordin Mohd Yusof, and Mohammad Reza Yavari. (2015). Determining the Effects of Machining Parameters and Modifier on Surface Roughness in Dry Turning of Al-20%Mg2Si-PMMC Using Design of Experiments (DOE). Procedia Manufacturing 2(December):280–85. doi: 10.1016/j.promfg.2015.07.049
  20. Rushing, Heath; Karl, Andrew; Wisnowski, James. (2013). Design and Analysis of Experiments by Douglas Montgomery: A Supplement for Using JMP
  21. Sarikaya, Murat, and Abdulkadir Güllü. (2015). Multi-Response Optimization of Minimum Quantity Lubrication Parameters Using Taguchi-Based Grey Relational Analysis in Turning of Difficult-to-Cut Alloy Haynes 25. Journal of Cleaner Production 91:347–57. doi: 10.1016/j.jclepro.2014.12.020
  22. Sayeed Ahmed, G. M., S. Sibghatullah Hussaini Quadri, and Md Sadiq Mohiuddin. (2015). Optimization of Feed and Radial Force in Turning Process by Using Taguchi Design Approach. Materials Today: Proceedings 2(4–5):3277–85. doi: 10.1016/j.matpr.2015.07.141
  23. Sulaiman, Shamsuddin, Mohammad Sh Alajmi, Wan Norizawati Wan Isahak, Muhammad Yusuf, and Muhammad Sayuti. (2022). Dry Milling Machining: Optimization of Cutting Parameters Affecting Surface Roughness of Aluminum 6061 Using the Taguchi Method. International Journal of Technology 13(1):58–68. doi: 10.14716/ijtech.v13i1.4208
  24. Yadav, Ravindra Nath. (2017). A Hybrid Approach of Taguchi-Response Surface Methodology for Modeling and Optimization of Duplex Turning Process. Measurement: Journal of the International Measurement Confederation 100:131–38. doi: 10.1016/j.measurement.2016.12.060

Last update:

No citation recorded.

Last update: 2024-04-15 22:53:32

No citation recorded.