skip to main content

Interpretasi Ukuran Kolom Grouting Geopolymer Menggunakan Metode Resistivitas

*Sumiyanto Sumiyanto scopus publons  -  Universitas Jenderal Soedirman, Indonesia
Agus Setyo Muntohar  -  Jurusan Teknik Sipil, Universitas Jenderal Soedirman, Indonesia
Sri Prabandiyani Retno Wardani  -  Jurusan Teknik Sipil, Universitas Jenderal Soedirman, Indonesia
Open Access Copyright (c) 2024 TEKNIK

Citation Format:
Abstract

Pada injeksi grouting, ukuran kolom grouting merupakan indikator penting untuk mengevaluasi keberhasilan penyebaran dan sementasi grouting. Pada penelitian di laboratorium, pengukuran kolom grouting dapat dilakukan dengan memisahkan antara kolom grouting dan tanah. Namun demikian, metode ini bersifat merusak dan hanya cocok untuk penelitian, sehingga tidak dapat diterapkan di lapangan. Metode resistivitas bersifat tidak merusak dan berhasil digunakan untuk interpretasi formasi batuan dyke. Formasi dyke ini mempunyai kemiripan dengan kolom grouting, sehingga metode resistivitas berpotensi dikembangkan untuk interpretasi ukuran kolom grouting. Berdasarkan pertimbangan tersebut, penelitian dilakukan untuk mengembangkan metode resistivitas sebagai metode interpretasi ukuran kolom grouting. Penelitian dilakukan di laboratorium menggunakan tanah clay shale yang diinjeksi grouting geopolymer. Berdasarkan hasil data pengukuran resistivitas dilakukan inversi untuk menggambarkan profil resistivitas benda uji, menggunakan software Res2dinv. Profil resistivitas pada umur 28 hari menghasilkan interpretasi ukuran kolom grouting yang akurat karena terdapat perbedaan resistivitas yang besar antara tanah dan kolom grouting. Hasil penelitian ini memberikan peluang metode resistivitas untuk kembangkan lebih lanjut sebagai metode interpretasi ukuran kolom grouting dan berpotensi untuk diterapkan di lapangan.

Fulltext View|Download
Keywords: grouting; metode resistivitas; kolom grouting

Article Metrics:

  1. Abraham, B. M., Santhosh Kumar, T. G., Sridharan, A., & Jose, B. T. (2014). Strength Improvement of Loose Sandy Soils Through Cement Grouting. Indian Geotechnical Journal, 44(3), 234–240. https://doi.org/10.1007/s40098-013-0073-3
  2. Alatas, I. M., Kamaruddin, S. A., Nazir, R., & Irsyam, M. (2016). Effect of weathering on disintegration and shear strength reduction of clay shale. Jurnal Teknologi, 78, 93–99. https://doi.org/10.11113/jt.v78.9491
  3. Arsyadi, A. Q., Yadi, K., Sutra, N., & Aryani Soemitro, R. A. (2017). Analisis Respon Resistivitas Sampel Tanah TPA Ngipik Kabupaten Gresik Berdasarkan Uji Resistivitas Skala Laboratorium. Jurnal Teknik ITS, 6(2), 2–6. https://doi.org/10.12962/j23373539.v6i2.23258
  4. Bhangale, L. A., & Bhosale, S. S. (2010). Stabilized soil evaluation using laboratory electrical resistivity cell. Indian Geotechnical Conference, 343–346
  5. Cambefort, H. (1977). The principles and applications of grouting. Quarterly Journal of Engineering Geology, 10(2), 57–95. https://doi.org/10.1144/GSL.QJEG.1977.010.02.01
  6. Dano, C., Hicher, P.-Y., & Tailliez, S. (2004). Engineering Properties of Grouted Sands. Journal of Geotechnical and Geoenvironmental Engineering, 130(3), 328–338. https://doi.org/10.1061/(asce)1090-0241(2004)130:3(328)
  7. Guo, C., Cui, C., & Wang, F. (2020). Case Study on Quick Treatment of Voids under Airport Pavement by Polymer Grouting. Journal of Materials in Civil Engineering, 32(7), 1–8. https://doi.org/10.1061/(asce)mt.1943-5533.0003228
  8. Hashimoto, K., Nishihara, S., Oji, S., Kanazawa, T., Nishie, S., Seko, I., Hyodo, T., & Tsukamoto, Y. (2016). Field testing of permeation grouting using microfine cement. Proceedings of the Institution of Civil Engineers: Ground Improvement, 169(2), 134–142. https://doi.org/10.1680/jgrim.15.00030
  9. Hou, F., Sun, K., Wu, Q., Xu, W., & Ren, S. (2019). Grout diffusion model in porous media considering the variation in viscosity with time. Advances in Mechanical Engineering, 11(1), 1–9. https://doi.org/10.1177/1687814018819890
  10. Kaga, M., & Yonekura, R. (1992). Estimation of Strength of Silicate-Grouted Sand. Soils and Foundations, 31(3), 43–59. https://doi.org/10.3208/sandf1972.31.3
  11. McCarter, W. J. (1984). The electrical resistivity characteristics of compacted clays. Geotechnique, 34(2), 263–267. https://doi.org/10.1680/geot.1984.34.2.263
  12. Mostafa, M., Anwar, M. B., & Radwan, A. (2018). Application of electrical resistivity measurement as quality control test for calcareous soil. HBRC Journal, 14(3), 379–384. https://doi.org/10.1016/j.hbrcj.2017.07.001
  13. Ni, J. C., & Cheng, W. C. (2012). Trial Grouting under Rigid Pavement: A Case History in Magong Airport, Penghu. Journal of Testing and Evaluation, 40(1), 1–12. https://doi.org/10.1520/JTE103776
  14. Noushini, A., & Castel, A. (2015). A resistivity-Based Approach to Indicate Chloride Permeability of Geopolymer Concrete. 27th Concrete Institute of Australia Conference, August, 10
  15. Ping, Y., Zhen-bin, P., Yi-qun, T., Wen-xiang, P., & Zhong-ming, H. (2008). Penetration Grouting Reinfeoced of Sandy Gravel. Journal of Central South University of Technology, 15, 280–284. https://doi.org/10.1007/s11771
  16. Raju, V. R., & Valluri, S. (2008). Practical Applications of Ground Improvement. Proceding of Symposium on Engineering of Ground & Environmental Geotechniques
  17. Rawlings, C. G., Hellawell, E. E., & Kilkenny, W. . M. (2000). Grouting for Ground Engineering. CIRIA
  18. Sumiyanto, Prabandiyani, S. P. R., & Muntohar, A. S. (2023). Stabilisation of Degraded Clay Shale With the Geopolymer Injection Method. International Journal of GEOMATE, 24(104), 19–26. https://doi.org/10.21660/2023.104.3666
  19. Sumiyanto, Wardani, S. P. R., & Munthohar, A. S. (2021). The Effect of Soil Porosity and Geopolymer Viscosity on Spreading Grouting in Weathered Clay Shale. IOP Conference Series: Materials Science and Engineering, 1144(1), 012095. https://doi.org/10.1088/1757-899x/1144/1/012095
  20. Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics (2nd ed.). Cambridge University Press
  21. Vincent, N. A., Shivashankar, R., Lokesh, K. N., & Jacob, J. M. (2017). Laboratory Electrical Resistivity Studies on Cement Stabilized Soil. International Scholarly Research Notices, 2017, 1–15. https://doi.org/10.1155/2017/8970153
  22. Wang, Q., Wang, S., Sloan, S. W., Sheng, D., & Pakzad, R. (2016). Experimental investigation of pressure grouting in sand. Soils and Foundations, 56(2), 161–173. https://doi.org/10.1016/j.sandf.2016.02.001
  23. Warner, J. P. E. (2004). Practical Handbook of Grouting: Soil, Rock, and Structures. John Wiley & Sons, Inc
  24. Yang, J., Cheng, Y., & Chen, W. (2019). Experimental Study on Diffusion Law of Post-Grouting Slurry in Sandy Soil. Advances in Civil Engineering, 2019(1), 1–11. https://doi.org/10.1155/2019/3493942
  25. Yoshida, N., & Hosokawa, K. (2004). Compression and Shear Behavior of Mudstone Aggregates. Journal of Geotechnical and Geoenvironmental Engineering, 130(5), 519–525. https://doi.org/10.1061/(asce)1090-0241(2004)130:5(519)
  26. Yun, J. W., Park, J. J., Kwon, Y. S., Kim, B. K., & Lee, I. M. (2017). Cement-based fracture grouting phenomenon of weathered granite soil. KSCE Journal of Civil Engineering, 21(1), 232–242. https://doi.org/10.1007/s12205-016-0862-1
  27. Zhang, S., Xu, Q., & Hu, Z. (2016). Effects of rainwater softening on red mudstone of deep-seated landslide, Southwest China. Engineering Geology, 204, 1–13. https://doi.org/10.1016/j.enggeo.2016.01.013
  28. Zohra-Hadjadj, F., Laredj, N., Maliki, M., Missoum, H., & Bendani, K. (2019). Laboratory evaluation of soil geotechnical properties via electrical conductivity. Revista Facultad de Ingenieria, 90, 101–112. https://doi.org/10.17533/UDEA.REDIN.N90A11

Last update:

No citation recorded.

Last update: 2024-12-26 00:41:44

No citation recorded.