skip to main content

Effect of In Situ Gelatin Addition on the Synthesis and Characteristics of Limestone Based Hydroxyapatite using Sol-Gel Method

Effect of In Situ Gelatin Addition on Synthesis and Characteristics of Limestone Based Hydroxyapatite using Sol-Gel Method

*Luluk Edahwati scopus  -  Department of Chemical Engineering, Universitas Pembangunan Nasional "Veteran" Jawa Timur, Jl. Rungkut Madya, Gunung. Anyar, Surabaya, 60294, Indonesia
Nazila Alfi Rahmah  -  Department of Chemical Engineering, Universitas Pembangunan Nasional "Veteran" Jawa Timur, Jl. Rungkut Madya, Gunung. Anyar, Surabaya, 60294, Indonesia
Mohammad Rafli Alif Wahyudi  -  Department of Chemical Engineering, Universitas Pembangunan Nasional "Veteran" Jawa Timur, Jl. Rungkut Madya, Gunung. Anyar, Surabaya, 60294, Indonesia
Open Access Copyright (c) 2025 TEKNIK

Citation Format:
Abstract

Hydroxyapatite (HAp) is a major component of bone and tooth tissues used to repair and rebuild malfunctioning bone. Hydroxyapatite synthesis widely utilizes materials that have a high calcium content. In this study, limestone was used as an economical calcium precursor. Gelatin was added in situ during the sol-gel process to improve biomechanical properties such as porosity and reduce the particle size. Therefore, this study aims to investigate the effect of in situ gelatin addition at different concentrations (30%, 40% and 50%) and pH variations (10, 11 and 12) during the sol–gel synthesis of limestone-based hydroxyapatite, focusing on its influence on porosity, particle size, and Ca/P ratio to evaluate its potential for biomedical applications. Highest yield was obtained when the hydroxyapatite was prepared using 30% gelatin concentration with pH 12. Fourier Transform Infrared (FTIR) spectroscopy confirmed the presence of the characteristic functional groups of hydroxyapatites, namely phosphate (PO₄³⁻), carbonate (CO₃²⁻), and hydroxyl (OH⁻). SEM-EDX analysis revealed granular and irregular crystal morphology with particle size below 600 nm, while image analysis of SEM-EDX micrographs using ImageJ estimated the highest apparent porosity of 60.73% at pH 10. These results indicate that the in situ addition of gelatin during the sol-gel process successfully produced hydroxyapatite with biomechanical properties suitable for implant applications, especially in teeth, with optimal porosity and adequate particle size to support cell growth.

Fulltext View|Download
Keywords: hydroxyapatite; gelatin; sol - gel method; limestone

Article Metrics:

  1. Akbar, A. F., Qurrota’aini, F., Nugroho, B., & Cahyaningrum, S. E. (2021). Sintesis dan karakterisasi hidroksiapatit tulang ikan baung (Hemibagrus nemurus sp.) sebagai kandidat implan tulang. Jurnal Kimia Riset, 6(2), 93–101
  2. Al-Shalawi, F. D., Mohamed Ariff, A. H., Jung, D. W., Mohd Ariffin, M. K. A., Seng Kim, C. L., Brabazon, D., & Al-Osaimi, M. O. (2023). Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. In Polymers (Vol. 15, Issue 12). MDPI. https://doi.org/10.3390/polym15122601
  3. Amalia, V., Soni Setiadji, D., Kimia, J., Sains dan Teknologi, F., Sunan Gunung Djati Bandung, U., & Kunci, K. (2022). Prosiding Seminar Nasional Kimia 2022 Seminar Nasional Kimia 2022 UIN Sunan Gunung Djati Bandung. Gunung Djati Conference Series, 15
  4. Anggresani, L., Perawati, S., Diana1, F., & Sutrisno, D. (2020). Pengaruh Variasi Perbandingan Mol Ca/P Pada Hidroksiapatit Berpori Tulang Ikan Tenggiri (Scomberomorus guttatus). In Jurnal Farmasi Higea (Vol. 12, Issue 1)
  5. Bemis, R., Heriyanti, H., Rahmi, R., Puspitasari, R. D., & Imawati, D. (2023). Pengaruh Variasi Konsentrasi Alumina Pada Sintesis Nanokomposit Hidroksiapatit/ Alumina dari Udang Papai Menggunakan Metode Hidrotermal. Journal of The Indonesian Society of Integrated Chemistry, 15(1), 56–66. https://doi.org/10.22437/jisic.v15i1.21309
  6. Budiatin, A. S., Khotib, J., Samirah, S., Ardianto, C., Gani, M. A., Putri, B. R. K. H., Arofik, H., Sadiwa, R. N., Lestari, I., Pratama, Y. A., Rahadiansyah, E., & Susilo, I. (2022). Acceleration of Bone Fracture Healing through the Use of Bovine Hydroxyapatite or Calcium Lactate Oral and Implant Bovine Hydroxyapatite–Gelatin on Bone Defect Animal Model. Polymers, 14(22). https://doi.org/10.3390/polym14224812
  7. Ghayor, C., Bhattacharya, I., & Weber, F. E. (2021). The optimal microarchitecture of 3D-printed β-TCP bone substitutes for vertical bone augmentation differs from that for osteoconduction. Materials and Design, 204. https://doi.org/10.1016/j.matdes.2021.109650
  8. Haruda, M. S., Fadli, A., & Yenti, S. R. (2016). Pengaruh pH dan Waktu Reaksi pada Sintesis Hidroksiapatit dari Tulang Sapi dengan Metode Presipitasi. Jom FTEKNIK, 3(1)
  9. Hutabarat, G. S., Qodir, D. T., Setiawan, H., Akbar, N., & Noviyanti, A. R. (2019). Sintesis Komposit Hidroksiapatit-Lantanum Oksida (HA-La2O3) dengan Metode Hidrotermal secara In-Situ dan Ex-Situ. ALCHEMY Jurnal Penelitian Kimia, 15(2), 287. https://doi.org/10.20961/alchemy.15.2.32062.287-301
  10. Jeong, J., Kim, J. H., Shim, J. H., Hwang, N. S., & Heo, C. Y. (2019). Bioactive calcium phosphate materials and applications in bone regeneration. In Biomaterials Research (Vol. 23, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40824-018-0149-3
  11. Khoirudin, M., Yelmida, & Zultiniar. (2015). Sintesis dan Karakterisasi Hidroksiapatit (HAp) dari Kulit Kerang Darah (Anadara granosa) dengan Proses Hidrotermal. JOM FTEKNIK, 2(2), 1
  12. Milla, L. El, Indrani, D. J., & Irawan, B. (2018). Nomer 1. In ODONTO Dental Journal (Vol. 5)
  13. Nurfitriyana, Fithri, N. A., Fitria, & Yanuarti, R. (2022). Analisis Interaksi Kimia Fourier Transform Infrared (FTIR) Tablet Gastroretentif Ekstrak Daun Petai (Parkia speciosa Hassk) dengan Polimer HPMC-K4M dan Kitosan. ISTA Online Technologi Journal, 03(02), 2745–7206. http://iontech.ista.ac.id/index.php/iontech
  14. Przekora, A. (2019). Current trends in fabrication of biomaterials for bone and cartilage regeneration: Materials modifications and biophysical stimulations. In International Journal of Molecular Sciences (Vol. 20, Issue 2). MDPI AG. https://doi.org/10.3390/ijms20020435
  15. Qu, H., Fu, H., Han, Z., & Sun, Y. (2019). Biomaterials for bone tissue engineering scaffolds: A review. In RSC Advances (Vol. 9, Issue 45, pp. 26252–26262). Royal Society of Chemistry. https://doi.org/10.1039/c9ra05214c
  16. Sahdiah, H., & Kurniawan, R. (2023). Optimasi Tegangan Akselerasi pada Scanning Electron Microscope – Energy Dispersive X-Ray Spectroscopy (SEM-EDX) untuk Pengamatan Morfologi Sampel Biologi. Jurnal Sains Dan Edukasi Sains, 6(2), 117–123. https://doi.org/10.24246/juses.v6i2p117-123
  17. Tekege, G., Haryati, E., & Dahlan, K. (2023). Sintesis Hidroksiapatit Dari Cangkang Telur Ayam Ras Asal Desa Koya Tengah Distrik Muaratami, Kota Jayapura. Jurnal Fisika Papua, 2(2), 99–103. https://doi.org/10.31957/jfp.v2i2.86
  18. Wardiana, A. E., Shalli, G., Saputra, C., & Cahyaningrum, S. E. (2019). Pemanfaatan Batu Kapur sebagai Bahan Baku Hidroksiapatit. UNESA Journal of Chemistry, 8(2)
  19. Xu, M., Liu, T., Qin, M., Cheng, Y., Lan, W., Niu, X., Wei, Y., Hu, Y., Lian, X., Zhao, L., Chen, S., Chen, W., & Huang, D. (2022). Bone-like hydroxyapatite anchored on alginate microspheres for bone regeneration. Carbohydrate Polymers, 287. https://doi.org/10.1016/j.carbpol.2022.119330
  20. Zhao, D., Zhu, T., Li, J., Cui, L., Zhang, Z., Zhuang, X., & Ding, J. (2021). Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. In Bioactive Materials (Vol. 6, Issue 2, pp. 346–360). KeAi Communications Co. https://doi.org/10.1016/j.bioactmat.2020.08.016

Last update:

No citation recorded.

Last update: 2025-09-03 22:02:02

No citation recorded.