skip to main content

Sound-Based Smart Toddler Monitoring System: AIoT Development with YAMNet on Raspberry Pi

*Theresia Herlina Rochadiani orcid scopus  -  Department of Informatics, Pradita University, Scientia Business Park, Jl. Gading Serpong Boulevard No.1 Tower 1, Curug Sangereng, Kec. Kelapa Dua, Kabupaten Tangerang, Banten 15810, Indonesia
Handri Santoso  -  Magister of Information Technology, Faculty of Science and Technology, Pradita University, , Indonesia
Ito Wasito  -  Magister of Information Technology, Faculty of Science and Technology, Pradita University, , Indonesia
Nadya Rudie Sucipto  -  Informatics Study Program, Pradita University, Scientia Business Park, Jl. Gading Serpong Boulevard No.1 Tower 1, Curug Sangereng, Kec.Kelapa Dua, Kabupaten Tangerang, Banten 15810, Indonesia
Astria Febrian Anggraini  -  Informatics Study Program, Pradita University, Scientia Business Park, Jl. Gading Serpong Boulevard No.1 Tower 1, Curug Sangereng, Kec.Kelapa Dua, Kabupaten Tangerang, Banten 15810, Indonesia
Ariya Panna  -  Informatics Study Program, Pradita University, Scientia Business Park, Jl. Gading Serpong Boulevard No.1 Tower 1, Curug Sangereng, Kec.Kelapa Dua, Kabupaten Tangerang, Banten 15810, Indonesia
Open Access Copyright (c) 2025 TEKNIK

Citation Format:
Abstract

The safety of toddlers at home is paramount for parents, but constant monitoring is difficult due to busy schedules. The limitations of camera-based monitoring solutions, namely privacy concerns and heavy processing, drive the need to develop monitoring systems that utilize sound recognition. This research aims to develop Smart Guardian, an Artificial Intelligence of Things (AIoT) system that can detect risky or emergency sound patterns from children and send real-time notifications to parents' mobile phones. The applied method includes the development of a YAMNet-based speech recognition AI model, installed on a Raspberry Pi as an edge computing device, with a microphone functioning to record environmental sounds. This system is designed to identify crucial environmental sounds such as breaking glass, explosions, screaming, water, fire alarms, smoke detectors, in addition to infant crying. The results of prototype trials under laboratory conditions indicate that the fire alarm and smoke detector classes have extremely high confidence levels (around 0.95 and 0.83). However, the glass class showed varying confidence levels (around 0.5), while cough, explosion, water, and screaming had lower confidence levels (median 0.15, 0.13, 0.25, and 0.4, respectively). The conclusion from these findings is that Smart Guardian has great potential as a privacy-focused toddler monitoring solution, although further optimization is needed to improve the speech recognition performance of events with low and varying confidence levels.

 
Fulltext View|Download
Keywords: AIoT; Raspberry Pi; sound detection; surveillance; toddlers; YAMNet
Funding: Universitas Pradita

Article Metrics:

  1. Alam, H., Burhan, M., Gillani, A., Haq, I. ul, Arshed, M. A., Shafi, M., & Ahmad, S. (2023). IoT Based Smart Baby Monitoring System with Emotion Recognition Using Machine Learning. Wireless Communications and Mobile Computing, 2023, 1–11. https://doi.org/10.1155/2023/1175450
  2. Asif, R., Azam, N., Raza, F. A., Riaz, M., Zulfiqar, S., & Razzaq, M. (2021). Knowledge, Attitude and Practices Regarding First Aid against Domestic Injuries in Mothers of Children less than 5 Years of Age Attending Fauji Foundation Hospital Islamabad. Pakistan Journal of Public Health, 11(3), 151–157. https://doi.org/10.32413/pjph.v11i3.761
  3. Bhasha, P., Pavan Kumar, T., Baseer, K. K., & Jyothsna, V. (2021). An IoT-Based BLYNK Server Application for Infant Monitoring Alert System to Detect Crying and Wetness of a Baby. In Advances in Intelligent Systems and Computing: Vol. 1312 AISC (pp. 55–65). https://doi.org/10.1007/978-981-33-6176-8_7
  4. Chauhan, H., Gupta, D., Gupta, S., & Haque, M. J. (2021). A Smart Cradle System to Monitor Infants for Healthcare Baby Wards Based on IoT and Blockchain. 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 606–609. IEEE. https://doi.org/10.1109/ICAC3N53548.2021.9725717
  5. Dewmini, A., Shashindi, M., Uththara, K., Sathushka, G., Manathunga, K., & Karunathilaka, S. (2024). Todly: Multimodal Approach for Toddler Safety and Well-Being Using Advanced Machine Learning. 2024 6th International Conference on Advancements in Computing (ICAC), 67–72. IEEE. https://doi.org/10.1109/ICAC64487.2024.10850986
  6. Gamal, M., Radi, I., Yousef, A., & Ali, A. G. M. (2025). Internet of Things-Based Smart Infant-Incubators Using Machine Learning Analysis. IEEE Access, 13(March), 77673–77685. https://doi.org/10.1109/ACCESS.2025.3564872
  7. Golla, M., S, S., Swaroopa, P., S, S. M., & Kamat, S. (2024). Computational Intelligence based Smart Nest for Infants. International Journal of Innovative Research in Technology, 10(11), 1100–1109. https://doi.org/10.13140/RG.2.2.36226.70082
  8. Gouda, A., Sorour, A., & Abdelaziz, M. (2022). Knowledge and Practice of Mothers Regarding First aids of Home Injuries Among Preschool Children. Zagazig Nursing Journal, 18(2), 206–218. https://doi.org/10.21608/znj.2022.269324
  9. Jullien, S. (2021). Prevention of unintentional injuries in children under five years. BMC Pediatrics, 21(S1), 311. https://doi.org/10.1186/s12887-021-02517-2
  10. Lunawat, S., Adhduk, A., Sawant, V., & Sanghvi, R. (2023). Smart Baby Cradle for Infant Soothing and Monitoring. In Practical Data Mining Techniques and Applications (1st ed., p. 16). Auerbach Publications
  11. Mahum, R., Irtaza, A., & Javed, A. (2023). EDL-Det: A Robust TTS Synthesis Detector Using VGG19-Based YAMNet and Ensemble Learning Block. IEEE Access, 11, 134701–134716. https://doi.org/10.1109/ACCESS.2023.3332561
  12. Mohammed, Z., Aledhaim, A., AbdelSalam, E. M., El-Setouhy, M., EL-Shinawi, M., & Hirshon, J. M. (2020). Factors associated with injuries among preschool children in Egypt: demographic and health survey results, 2014. BMC Public Health, 20(1), 595. https://doi.org/10.1186/s12889-020-08658-w
  13. Nageh, H., Abd El-Raouf, S., & Abd El-Mouty, S. (2020). MOTHERS’ KNOWLEDGE AND SUBJECTIVE PRACTICE TOWARD MOST COMMON DOMESTIC INJURIES AMONG UNDER-FIVE CHILDREN. Mansoura Nursing Journal, 7(1), 19–35. https://doi.org/10.21608/mnj.2020.175751
  14. Parvathavarthini, S., Bhuvaneswaran, U., Arun, U. M., & Sengottayan, S. (2024). Baby Monitoring Using IOT and Deep Learning. 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–9. IEEE. https://doi.org/10.1109/ICCCNT61001.2024.10725151
  15. Prathyanga, A., Shyaminda, P., Chamikara, P., Lakshan, S., Thelijjagoda, S., & Kasthurirathna, D. (2024). Intelligent Daycare: Enhancing Child Safety with IoT and Machine Learning Innovations. 2024 9th International Conference on Communication and Electronics Systems (ICCES), 530–538. IEEE. https://doi.org/10.1109/ICCES63552.2024.10859472
  16. Putri, B. J. (2016, September 15). 2 juta anak indonesia masuk IGD karena kecelakaan di rumah. Liputan6.Com. Retrieved from https://www.liputan6.com/health/read/2602688/2-juta-anak-indonesia-masuk-igd-karena-kecelakaan-di-rumah
  17. Sariffuddin, S. (2015). PELUANG PENGEMBANGAN SMART CITY UNTUK MEWUJUDKAN KOTA TANGGUH DI KOTA SEMARANG (Studi Kasus: Penyusunan Sistem Peringatan Dini Banjir Sub Drainase Beringin). Teknik, 36(1), 32–38. https://doi.org/10.14710/teknik.v36i1.7823
  18. Silva, M. F. da, Fontinele, D. R. D. S., Oliveira, A. V. S. de, Bezerra, M. A. R., & Rocha, S. S. da. (2017). Determining factors of domestic accidents in early childhood. Journal of Human Growth and Development, 27(1), 10. https://doi.org/10.7322/jhgd.127643
  19. Sutanto, E., Fahmi, F., Shalannanda, W., & Aridarma, A. (2021). Cry Recognition for Infant Incubator Monitoring System Based on Internet of Things using Machine Learning. International Journal of Intelligent Engineering and Systems, 14(1), 444–454. https://doi.org/10.22266/IJIES2021.0228.41
  20. Syafei, W. A., Listyono, A. F., Prayogi, A. S., Darjat, D., & Hidayatno, A. (2019). Pengembangan Perangkat Lunak Untuk Gerbang Tol Otomatis Yang Ramah Lingkungan Berbasis RFID Dengan Notifikasi Pembayaran Tanpa Kertas. Teknik, 40(1), 31. https://doi.org/10.14710/teknik.v39i3.22829

Last update:

No citation recorded.

Last update: 2025-09-20 06:29:01

No citation recorded.