skip to main content

Vertical Deformation of Manikin Asphalt Concrete Core Dam Using Mohr-Coulomb and Hardening Soil Material Models with Plaxis 2D Software

*Arya Bakti Gewangga  -  Department of Civil Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275|Universitas Diponegoro, Indonesia
Kresno Wikan Sadono  -  , Indonesia
Open Access Copyright (c) 2025 TEKNIK

Citation Format:
Abstract

The Manikin Dam, located in Taebenu District, Kupang Regency, East Nusa Tenggara Province, is currently under construction. The dam is designed with an asphalt concrete core. The initial foundation elevation of the Manikin Dam was set at 103 meters above sea level due to fluctuating NSPT values. Consequently, the Dam Safety Commission recommended lowering the foundation elevation to 98 meters above sea level. This study aims to analyze the relationship between vertical deformation and stability in the Manikin Dam design at different foundation elevations. The modeling was conducted using Plaxis 2D V22, simulating asphalt concrete with two material models: Mohr-coulomb and hardening soil.The analysis results indicate that as the embankment height increases at different foundation elevations, the safety factor decreases while vertical deformation increases. At the final stage of embankment construction, the vertical deformation of the Manikin Dam at a foundation elevation of 103 meters for the mohr-coulomb core material model is 35.12 cm with a safety factor of 1.723, whereas, for The hardening soil core material model, it is 35.74 cm with a safety factor of 1.720. At a foundation elevation of 98 meters, the vertical deformation is 35.81 cm for the mohr-coulomb core material model with a safety factor of 1.715 and 36.69 cm for The hardening soil core material model with a safety factor 1.724. The safety factor and vertical deformation values for the dam core using both the mohr-coulomb and hardening soil material models remain within permissible limits.

Fulltext View|Download
Keywords: Stability; Vertical Deformation; Mohr-Coulomb; Hardening Soil Model

Article Metrics:

  1. Baziar, M., Salemi, S., & Heidari, T. (2006). Analysis of Earthquake Response of an Asphalt Concrete Core Embankment Dam
  2. Bhutto, A. H., Zardari, S., Bhurgri, G. S., Zardari, M. A., Bhanbhro, R., Memon, B. A., & Babar, M. M. (2019). Mohr-coulomb and hardening soil Model Comparison of the Settlement of an Embankment Dam. Engineering, Technology and Applied Science Research, 9(5), 4654–4658. https://doi.org/10.48084/etasr.3034
  3. Bokko, J. (2019). Analisis Kelongsoran Jalan Poros Sangalla-Batualu Dengan Program Plaxis. Journal Dynamic Saint, 4(1), 764–772. https://doi.org/10.47178/dynamicsaint.v4i1.690
  4. DPU Ditjen Pengairan Direktorat Bina Teknik. (1999). Panduan Perencanaan Bend Urugan Vol 3. Desain Pondasi & Tubuh Bendungan (Vol. 3)
  5. Feng, S., Wang, W., Hu, K., & Höeg, K. (2020). Stress-strain-strength behavior of asphalt core in embankment dams during construction. Construction and Building Materials, 259. https://doi.org/10.1016/j.conbuildmat.2020.119706
  6. Hoeg, K. (1993). Asphaltic Concrete Cores for Embankment Dams
  7. Hunter, G., & Fell, R. (2003). THE UNIVERSITY OF EMBANKMENT DAMS. February
  8. ICOLD. (1993). Rock material for rockfill dam. ICOLD Bulletin, 92, 6
  9. International Commission on Large Dams. (2018). Asphalt concrete cores for embankment dams (DARFT). February, 103
  10. Petkovski, L., Tanchev, L., Professor, R., Mitovski, S., & Assistant, T. (2020). COMPARISON OF NUMERICAL MODELS ON RESEARCH OF STATE AT FIRST IMPOUNDING OF A ROCKFILL DAMS WITH AN ASPHALT CORE
  11. Riza, M. (2014). Reliabilitas Model Tanah Mohr-coulomb Dan Hardening soil Pada Kasus Kelongsoran Galian Longstorage Di Tanah Lunak. https://www.researchgate.net/publication/361244798
  12. Sari, UC; Sholeh, M. (2022). Konsep Dasar dan Cara Mudah Penggunaan Plaxis V8.2. Pustaka Pranala
  13. Shiravi, S., & Razmkhah, A. (2021). Parametric stress-strain analysis for upstream slope of the asphaltic concrete core rockfill dams in static state. Nexo Revista Científica, 34(06), 1800–1818. https://doi.org/10.5377/nexo.v34i06.13161
  14. SNI 8062. (2015). Tata cara desain tubuh bendungan tipe urugan
  15. Tazakka, M. S. (2024). Plaxis untuk Geoteknik Dasar
  16. Tschernutter, P., & Kainrath, A. (2017). A Case Study on the Deformation Behavior of Asphalt Concrete Core Dams ( ACRD ) with Different Core Inclinations. Ltbd, 857–863
  17. Zhang, Y., Wang, W., & Zhu, Y. (2015). Investigation on conditions of hydraulic fracturing for asphalt concrete used as impervious core in dams. Construction and Building Materials, 93, 775–781. https://doi.org/10.1016/j.conbuildmat.2015.05.097

Last update:

No citation recorded.

Last update: 2025-04-27 18:25:10

No citation recorded.