skip to main content

Development of an Arduino-Based Microcontroller System to Maintain Temperature Stability in the Plastic Waste Pyrolysis Process

*Enzo Wiranta Battra Siahaan orcid scopus  -  Department of Mechanical Engineering, Faculty of Engineering, Universitas HKBP Nommensen Medan, Jl. Sutomo No.4A, Perintis, Medan, Sumatera Utara, 20235, Indonesia
Hodmiantua Sitanggang  -  Department of Mechanical Engineering, Faculty of Engineering, Universitas Darma Agung, Jl. Dr. T.D. Pardede No. 21, Petisah Hulu, Medan, Sumatera Utara, 20153, Indonesia
Rotama Arifin Sidabutar  -  Department of Mechanical Engineering, Faculty of Engineering, Universitas Darma Agung, Jl. Dr. T.D. Pardede No. 21, Petisah Hulu, Medan, Sumatera Utara, 20153, Indonesia
Open Access Copyright (c) 2025 TEKNIK

Citation Format:
Abstract

This study aims to develop and evaluate a temperature monitoring and control system for a plastic pyrolysis model operating within the temperature range of 400–500 °C. The system is designed using a microcontroller to read signals from 4 thermocouples placed at various points within the pyrolysis chamber. The collected temperature data are processed, displayed on an LCD screen, and stored on an SD card. Temperature control is carried out using a potentiometer, while data logging is managed through push-button switches. An electric heater is used as the heat source, controlled by a relay, and temperature readings are calibrated using a commercial thermometer to ensure accuracy. The test results indicate that the system is capable of consistently monitoring and maintaining temperatures within the specified range. Although temperature variations were observed at different measurement points, the system generally demonstrated good performance in temperature control. The system effectively approached the target temperature, though temperature deviations were still influenced by heating rate and thermocouple characteristics. Additionally, the observed uneven temperature distribution highlights the need for improvements in the heating system design to enhance thermal uniformity within the pyrolysis chamber.

Fulltext View|Download
Keywords: Arduino - based; microcontroller; plastic waste; pyrolysis; room temperature.

Article Metrics:

  1. Amiruddin, M., & Sutopo, B. (2012). Sistem Kontrol Suhu Dan Laju Pemanasan Alat Pirolisis. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 1(3), 49–54
  2. Asokan, M. A., Senthur Prabu, S., Bade, P. K. K., Nekkanti, V. M., & Gutta, S. S. G. (2019). Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine. Energy, 173, 883–892. https://doi.org/10.1016/j.energy.2019.02.075
  3. Aydinli, B., & Caglar, A. (2010). The comparison of hazelnut shell co-pyrolysis with polyethylene oxide and previous ultra-high molecular weight polyethylene. Journal of Analytical and Applied Pyrolysis, 87(2), 263–268. https://doi.org/10.1016/j.jaap.2010.01.006
  4. Daffallah, K. O., Benghanem, M., Alamri, S. N., Joraid, A. A., & Al-Mashraqi, A. A. (2017). Experimental evaluation of photovoltaic DC refrigerator under different thermostat settings. Renewable Energy, 113, 1150–1159. https://doi.org/10.1016/j.renene.2017.05.099
  5. De La Flor Barriga, L., & Rodríguez Zúñiga, U. F. (2022). Numerical analysis on a catalytic pyrolysis reactor design for plastic waste upcycling using CFD modelling. RSC Advances, 12, 12436–12445. https://doi.org/10.1039/D2RA01407F
  6. Ekanayaka, A., Tibpromma, S., Dai, D., Xu, R.-F., Suwannarach, N., Stephenson, S., Dao, C., & Karunarathna, S. (2022). A Review of the Fungi That Degrade Plastic. Journal of Fungi, 8, 772. https://doi.org/10.3390/jof8080772
  7. Elektronika, T. (2017). Pengertian Termokopel (Thermocouple) dan Prinsip Kerjanya. http://teknikelektronika.com/pengertian-termokopel-thermocouple-dan-prinsip-kerjanya/
  8. Eriksson, O., & Finnveden, G. (2009). Plastic waste as a fuel – CO2-neutral or not? Energy & Environmental Science, 2, 907–914. https://doi.org/10.1039/b908135f
  9. Foysal, M. R. (2021). IoT based temperature control system of home by using an android device. In 2021 1st International Conference on Emerging Smart Technologies and Applications, eSmarTA 2021. https://doi.org/10.1109/eSmarTA52612.2021.9515729
  10. Garcia-Garcia, G. (2024). Environmental Impact of Different Scenarios for the Pyrolysis of Contaminated Mixed Plastic Waste. Green Chemistry. https://doi.org/10.1039/d3gc04396g
  11. Ge, S., Ganesan, R., Sekar, M., Xia, C., Shanmugam, S., Alsehli, M., & Brindhadevi, K. (2022). Blending and emission characteristics of biogasoline produced using CaO/SBA-15 catalyst by cracking used cooking oil. Fuel, 307(41), 121861. https://doi.org/10.1016/j.fuel.2021.121861
  12. Gupta, M. K., & Singhal, V. (2022). Review on materials for making lightweight vehicles. Materials Today: Proceedings, 56, 868–872. https://doi.org/https://doi.org/10.1016/j.matpr.2022.02.517
  13. Hartulistiyoso, E., Sigiro, F. A., & Yulianto, M. (2015). Temperature distribution of the plastics Pyrolysis process to produce fuel at 450oC. Procedia Environmental Sciences, 28, 234–241
  14. Hermann, M., Jansen, R., van de Glind, J., Peeters, E. T. H. M., & Van den Brink, P. J. (2022). A transportable temperature and heatwave control device (TENTACLE) for laboratory and field simulations of different climate change scenarios in aquatic micro- and mesocosms. HardwareX, 11, e00307. https://doi.org/https://doi.org/10.1016/j.ohx.2022.e00307
  15. Hoang, A. T., Ong, H. C., Fattah, I. M. R., Chong, C. T., Cheng, C. K., Sakthivel, R., & Ok, Y. S. (2021). Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology, 223, 106997. https://doi.org/https://doi.org/10.1016/j.fuproc.2021.106997
  16. Kandindi Muteba, G., Ewim, D. R. E., Dirker, J., & Meyer, J. P. (2023). Heat transfer and pressure drop investigation for prescribed heat fluxes on both the inner and outer wall of an annular duct. Experimental Thermal and Fluid Science, 145, 110907. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2023.110907
  17. Karlsson, M. B., Benedini, L., Jensen, C. D., Kamp, A., Henriksen, U. B., & Thomsen, T. P. (2024). Climate footprint assessment of plastic waste pyrolysis and impacts on the Danish waste management system. Journal of Environmental Management, 351, 119780. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.119780
  18. Mahmud, S., Khandakar, A., Chowdhury, M. E. H., AbdulMoniem, M., Bin Ibne Reaz, M., Bin Mahbub, Z., Sadasivuni, K. K., Murugappan, M., & Alhatou, M. (2023). Fiber Bragg Gratings based smart insole to measure plantar pressure and temperature. Sensors and Actuators A: Physical, 350, 114092. https://doi.org/https://doi.org/10.1016/j.sna.2022.114092
  19. Maitlo, G., Ali, I., Ali Maitlo, H., Ali, S., Unar, I., Ahmad, M., Bhutto, D. K., Karmani, R., Naich, S., Sajjad, R., Ali, S., & Afridi, M. N. (2022). Plastic Waste Recycling, Applications, and Future Prospects for a Sustainable Environment. Sustainability, 14. https://doi.org/10.3390/su141811637
  20. Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., & Nizami, A. S. (2017). Effect of plastic waste types on pyrolysis liquid oil. International Biodeterioration and Biodegradation, 119, 239–252. https://doi.org/10.1016/j.ibiod.2016.09.017
  21. Min, J., Yan, G., Abed, A. M., Elattar, S., Amine Khadimallah, M., Jan, A., & Elhosiny Ali, H. (2022). The effect of carbon dioxide emissions on the building energy efficiency. Fuel, 326, 124842. https://doi.org/https://doi.org/10.1016/j.fuel.2022.124842
  22. Mohod, R, T., Bhansali, S, S., Moghe, S. M., & Kathoke, T. B. (2014). Preheating of Biodiesel for the Improvement of the Performance Characteristics of Di Engine : A Review. International Journal of Engineering Research and General Science, 2(4), 747–753. https://doi.org/10.12691/ajme-6-2-4
  23. Nguyen, V. H., Duong, M. Q., Nguyen, K. T., Pham, T. V., & Pham, P. X. (2020). An extensive analysis of biodiesel blend combustion characteristics under a wide-range of thermal conditions of a cooperative fuel research engine. Sustainability (Switzerland), 12(18). https://doi.org/10.3390/su12187666
  24. Passamonti, F. J., Benitez, V. M., Especel, C., Epron, F., Pieck, C. L., & D´Ippolito, S. A. (2024). SiO2-Al2O3 catalysts for methanol to olefins: Comparative study with SAPO34 and ZSM5. Applied Catalysis A: General, 670(October 2023), 119556. https://doi.org/10.1016/j.apcata.2023.119556
  25. Pongoh, D. S., Budiman, M., Kantohe, D., & Lumentut, V. (2021). Implementasi Software LabVIEW untuk Mendukung Sistem Smart Home Berbasis Mikrokontroler. Prosiding Industrial Research Workshop and National Seminar, 12, 394–400
  26. Pradeep, A. P., & Gowthaman, S. (2022). Extraction of transportation grade fuels from waste LDPE packaging polymers using catalytic pyrolysis. Fuel, 323, 124416. https://doi.org/https://doi.org/10.1016/j.fuel.2022.124416
  27. Qureshi, M. S., Oasmaa, A., Pihkola, H., Deviatkin, I., Tenhunen, A., Mannila, J., Minkkinen, H., Pohjakallio, M., & Laine-Ylijoki, J. (2020). Pyrolysis of plastic waste: Opportunities and challenges. Journal of Analytical and Applied Pyrolysis, 152, 104804
  28. Rahman, S. M. A., Hachicha, A. A., Ghenai, C., Saidur, R., & Said, Z. (2020). Performance and life cycle analysis of a novel portable solar thermoelectric refrigerator. Case Studies in Thermal Engineering, 19, 100599. https://doi.org/https://doi.org/10.1016/j.csite.2020.100599
  29. Ramos, A., Chatzopoulou, M. A., Guarracino, I., Freeman, J., & Markides, C. N. (2017). Hybrid photovoltaic-thermal solar systems for combined heating, cooling and power provision in the urban environment. Energy Conversion and Management, 150, 838–850. https://doi.org/https://doi.org/10.1016/j.enconman.2017.03.024
  30. Rashid, M. S. dan M. M. (2013). Mixture of LDPE, PP and PS Waste Plastics into Fuel by Thermolysis Process. International Journal of Engineering and Technology Research, 1(1), 2327–0349
  31. Sarker, M., & Rashid, M. M. (2013). Mixture of LDPE, PP and PS Waste Plastics into Fuel by Thermolysis Process. International Journal of Engineering and Technology Research, 1(1), 2327–0349
  32. Shen, M., Huang, W., Chen, M., Song, B., Zeng, G., & Zhang, Y. (2020). (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. Journal of Cleaner Production, 254, 120138. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120138
  33. Shi, H., Ran, L., & Ancheyta, J. (2024). In-situ upgrading of heavy crude oils inspired by ex-situ petroleum refining processes. Fuel, 365, 131113. https://doi.org/https://doi.org/10.1016/j.fuel.2024.131113
  34. Su, G., Ong, H. C., Fattah, I. M. R., Ok, Y. S., Jang, J.-H., & Wang, C.-T. (2022). State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges. Science of The Total Environment, 809, 151170. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151170
  35. Su, G., Ong, H. C., Ibrahim, S., Fattah, I. M. R., Mofijur, M., & Chong, C. T. (2021). Valorisation of medical waste through pyrolysis for a cleaner environment: Progress and challenges. Environmental Pollution, 279, 116934. https://doi.org/https://doi.org/10.1016/j.envpol.2021.116934
  36. Thahir, R., Altway, A., Juliastuti, S. R., & Susianto. (2019). Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. Energy Reports, 5, 70–77. https://doi.org/10.1016/j.egyr.2018.11.004
  37. Yang, S., Wang, H., Zheng, J., Pan, Y., & Ji, C. (2024). Comprehensive review: Study on heating rate characteristics and coupling simulation of oil shale pyrolysis. Journal of Analytical and Applied Pyrolysis, 177, 106289. https://doi.org/https://doi.org/10.1016/j.jaap.2023.106289

Last update:

No citation recorded.

Last update: 2025-08-30 05:39:42

No citation recorded.