skip to main content

OPTIMALISASI KINERJA REPEATER SINYAL GLOBAL SYSTEM FOR MOBILE DENGAN METODE HIGH-MULTI SERIAL (STUDI KASUS : PEGUNUNGAN PEGANTENAN, PAMEKASAN)

*Achmad Ubaidillah  -  Teknik Elektro, Universitas Trunojoyo Madura, Indonesia
Kiki Handoko  -  Teknik Elektro, Universitas Trunojoyo Madura, Indonesia
S Ida Kholida  -  Pendidikan Fisika Elektro, Universitas Islam Madura, Indonesia
Dikirim: 13 Jul 2023; Diterbitkan: 1 Des 2023.
Akses Terbuka Copyright (c) 2023 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari
Daerah pegunungan kecamatan Pegantenan kabupaten Pamekasan, sampai saat ini memiliki jaringan seluler  Global System for Mobile (GSM) yang kurang baik. Jaringa tersebut baik di sebagian daerah, dan buruk di daerah yang lain. Hal ini karena kontur tanah di daerah pegunungan yang tinggi dan rendah dan mengitari pegunungan serta ketersediaan Base Tranceiver Station (BTS) yang relatif kurang memadai. Padahal di era digital ini, seluruh warga masyarakat memilliki ketergantungan pada media dan peralatan digital, seperti hand phone, laptop dan sebagainya. Untuk mengatasi masalah itu, penggunaan repeater bisa dijadikan salah satu solusinya. Namun, jangkauan repeater sangat terbatas, dalam pengertian diperlukan teknik untuk meningkatkan dan memaksimalkan performansinya agar dihasilkan jangkauan semaksimal mungkin. Penelitian ini menguji dan mengoptimalisasi kinerja repeater sinyal GSM dengan metode High-Multi Serial agar penggunaan repeater menjadi optimal dan menghasilkan jangkauan lebih luas serta menghasilkan Quality of Service (QoS) sinyal yang lebih baik. Hasil penelitian menunjukkan bahwa ketinggian antena sangat berpengaruh pada jangkauan dan QoS dari sinyal keluaran repeater. Ketinggian optimal dari antena repeater internal yang digunakan adalah sekitar 8 m. Selain itu, penggunaan multi repeater yang disusun secara serial juga dapat meningkatkan jaungkauan maupun QoS.Daerah pegunungan kecamatan Pegantenan kabupaten Pamekasan,sampai saat ini memiliki jaringan seluler  Global System for Mobile (GSM) yang kurang baik. Jaringan tersebut baik di sebagian daerah, dan buruk di daerah yang lain. Hal ini karena kontur tanah di daerah pegunungan yang tinggi dan rendah dan mengitari pegunungan serta ketersediaan Base Tranceiver Station (BTS) yang relatif kurang memadai. Padahal di zaman ini, seluruh warga masyarakat memilliki ketergantungan pada media dan peralatan digital, seperti hand phone, laptop dan sebagainya. Penggunaan repeater bisa dijadikan salah satu solusi untuk mengatasi permasalahan tersebut. Namun, jangkauan repeater sangat terbatas, dalam pengertian diperlukan teknik untuk meningkatkan dan memaksimalkan performansinya agar dihasilkan jangkauan semaksimal mungkin. Penelitian ini menguji dan mengoptimalisasi kinerja repeater sinyal GSM dengan metode High-Multi Serial agar penggunaan repeater menjadi optimal dan menghasilkan jangkauan lebih luas serta menghasilkan Quality of Service (QoS) sinyal yang lebih baik. Hasil penelitian menunjukkan bahwa ketinggian antena sangat berpengaruh pada jangkauan dan QoS dari sinyal keluaran repeater. Ketinggian optimal dari antena repeater internal yang digunakan adalah sekitar 8 m dengan jumlah bar rata-rata 3 bar, Signal to Noise Ratio rata-rata 5,25 dB, delay rata-rata 78,63 ms, jitter rata-rata 31,50 ms, throughput rata-rata 793,75 KBps dan packet loss rata-rata 1,38%. Selain itu, penggunaan multi-repeater yang disusun secara serial juga dapat meningkatkan jaungkauan maupun QoS dengan peningkatan kinerja mendekati n kali lipat.
Fulltext View|Download
Kata Kunci: optimalisasi, repeater, GSM, High-Multi Serial

Article Metrics:

  1. A. V Ryzhkov and A. Y. Nasonov, “networks,” 2018Systems Signal Synchronization, Gener. Process. Telecommun., pp. 1–4, 2018
  2. J. Mei, X. Wang, and K. Zheng, “An intelligent self-sustained RAN slicing framework for diverse service provisioning in 5G-beyond and 6G networks,” Intell. Converg. Networks, vol. 1, no. 3, pp. 281–294, 2021, doi: 10.23919/icn.2020.0019
  3. E. Setiawan, “The Potential Use of High Altitude Platform Station in Rural Telecommunication Infrastructure,” Proceeding - 2018 Int. Conf. ICT Rural Dev. Rural Dev. through ICT Concept, Des. Implic. IC-ICTRuDEv 2018, pp. 35–37, 2018, doi: 10.1109/ICICTR.2018.8706563
  4. D. Xie, R. Guo, H. Li, Y. Jing, and W. He, “The effect of vegetation on the propagation loss of v2i network in high altitude and mountainous area,” J. Commun., vol. 16, no. 10, pp. 437–443, 2021, doi: 10.12720/jcm.16.10.437-443
  5. Z. Fan, X. Wang, and M. Lin, “A Multimode RF Test Control System with Repeater,” Int. Conf. Commun. Technol. Proceedings, ICCT, pp. 1175–1178, 2019, doi: 10.1109/ICCT46805.2019.8947084
  6. A. B. Gladyshev, D. D. Dmitriev, and V. N. Tyapkin, “Software and hardware development and testing of repeaters of communication satellites,” 2019 Int. Sib. Conf. Control Commun. SIBCON 2019 - Proc., pp. 1–5, 2019, doi: 10.1109/SIBCON.2019.8729616
  7. S. Lentz and B. Howe, “Scientific monitoring and reliable telecommunications (SMART) cable systems: Integration of sensors into telecommunications repeaters,” 2018 Ocean. - MTS/IEEE Kobe Techno-Oceans, Ocean. - Kobe 2018, pp. 1–7, 2018, doi: 10.1109/OCEANSKOBE.2018.8558862
  8. F. Li, S. Hong, Y. Gu, and L. Wang, “An Optimization-Oriented Algorithm for Sparse Signal Reconstruction,” IEEE Signal Process. Lett., vol. 26, no. 3, pp. 515–519, 2019, doi: 10.1109/LSP.2019.2897458
  9. T. X. Q. Shqj et al., “5Dgldo %Dvlv )Xqfwlrq 1Hwzrun %Dvhg 3Lsholqh 0Rqlwrulqj 6Ljqdo 2Swlpl]Dwlrq,” pp. 5–9
  10. D. Meng, L. Xiao, and H. Y. Kong, “Characterizing OMNI-Directional Antenna by Complex Normalized Effective Height Based on Broadband Calculable Antennas,” CPEM 2018 - Conf. Precis. Electromagn. Meas., pp. 1–2, 2018, doi: 10.1109/CPEM.2018.8500934
  11. D. Meng and L. Xiao, “Characterization of Omnidirectional Antennas by Measurement of Their Complex Normalized Effective Height,” IEEE Trans. Instrum. Meas., vol. 69, no. 5, pp. 2239–2247, 2020, doi: 10.1109/TIM.2019.2921136
  12. M. Zhou, W. Liu, J. Zhang, and X. Chu, “Joint Impact of BS Height and Downtilt on Downlink Data Rate in mmWave Networks with 3D Large-Scale Antenna Arrays,” 2020 Int. Symp. Networks, Comput. Commun. ISNCC 2020, 2020, doi: 10.1109/ISNCC49221.2020.9297236
  13. R. Mishra, P. Kuchhal, and A. Kumar, “Effect of height of the substrate and width of the patch on the performance characteristics of microstrip antenna,” Int. J. Electr. Comput. Eng., vol. 5, no. 6, pp. 1441–1445, 2015, doi: 10.11591/ijece.v5i6.pp1441-1445
  14. V. Hanumante et al., “Performance Analysis of Rectangular Patch Antenna for Different Substrate Heights Management View project Internet of Things View project Performance Analysis of Rectangular Patch Antenna for Different Substrate Heights,” vol. 2, no. 1, 2014, [Online]. Available: www.ijireeice.com
  15. G. C. Alexandropoulos, R. Khayatzadeh, M. Kamoun, Y. Ganghua, and M. Debbah, “Indoor Time Reversal Wireless Communication: Experimental Results for Localization and Signal Coverage,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., vol. 2019-May, pp. 7844–7848, 2019, doi: 10.1109/ICASSP.2019.8683188
  16. A. Ubaidillah, M. Ulum, H. Astutik, and S. I. Kholida, “The Influence of Node Velocity and Traffic Congestion on The Performance of AODV in MANET,” vol. 1, no. Icst, pp. 715–719, 2018, doi: 10.2991/icst-18.2018.145
  17. S. Sanjeev, “Genetic Algorithm and Multiple QoS Aspects,” 2018 Int. Conf. Adv. Comput. Commun. Informatics, pp. 922–927, 2018
  18. Y. R. Yungka and D. C. Widiyanto, “4G LTE Network Walk Test Analysis using Android Application G-Net Track on SWCU FTI Building,” J. Tek. Inform., vol. 4, no. 2, pp. 441–448, 2023
  19. G. Carluccio, G. Haemer, and C. Collins, “SNR improvement when a High Permittivity Material helmet-shaped former is used with a close-fitting Head Array,” Proc. 2018 20th Int. Conf. Electromagn. Adv. Appl. ICEAA 2018, pp. 304–306, 2018, doi: 10.1109/ICEAA.2018.8520382
  20. I. Correa, B. Dortschy, and A. Klautau, “SNR-Based Pre-Emphasis for Transmission of Frequency-Multiplexed Radio Signals in Fronthaul,” IEEE Commun. Lett., vol. 24, no. 9, pp. 2034–2037, 2020, doi: 10.1109/LCOMM.2020.2994767
  21. J. Han, M. Lyu, and V. Sivaraman, “On the Validity of Internet Speed Test Tools and Broadband Measurement Programs,” ACM Int. Conf. Proceeding Ser., pp. 1–9, 2022, doi: 10.1145/3570748.3570749
  22. P. Nayak and E. W. Knightly, “Virtual speed test: An AP tool for passive analysis of wireless LANs,” Comput. Commun., vol. 192, pp. 185–196, 2022, doi: 10.1016/j.comcom.2022.05.031
  23. A. H. Sodhro, A. S. Malokani, G. H. Sodhro, M. Muzammal, and L. Zongwei, “An adaptive QoS computation for medical data processing in intelligent healthcare applications,” Neural Comput. Appl., vol. 32, no. 3, pp. 723–734, 2020, doi: 10.1007/s00521-018-3931-1
  24. M. Y. Simargolang and A. Widarma, “Quality of Service (QoS) for Network Performance Analysis Wireless Area Network (WLAN),” CESS (Journal Comput. Eng. Syst. Sci., vol. 7, no. 1, p. 162, 2022, doi: 10.24114/cess.v7i1.29758
  25. S. S. Mohamed, A. F. I. Abdel-Fatah, and M. A. Mohamed, “Performance evaluation of MANET routing protocols based on QoS and energy parameters,” Int. J. Electr. Comput. Eng., vol. 10, no. 4, pp. 3635–3642, 2020, doi: 10.11591/ijece.v10i4.pp3635-3642
  26. B. Robert and E. B. Brown, “Analysis of Quality of Service (QoS) wi-fi Network in UNNES Digital Center Building Using Wireshark,” Journal of Student Research Exploration, no. 1, pp. 1–14, 2004
  27. G. D. Ramady, G. M. Rahmatullah, M. C. T. Manullang, A. F. Zulkarnain, R. Sufyani, and R. Hidayat, “QoS Analysis on Campus Building Network Infrastructure with WDS Technique using PCQ Method,” J. Phys. Conf. Ser., vol. 1783, no. 1, pp. 0–6, 2021, doi: 10.1088/1742-6596/1783/1/012023
  28. D. Li, X. Wang, Y. Jin, and H. Liu, “Research on QoS routing method based on NSGAII in SDN,” J. Phys. Conf. Ser., vol. 1656, no. 1, 2020, doi: 10.1088/1742-6596/1656/1/012027
  29. A. Charisma, A. D. Setiawan, G. M. Rahmatullah, and M. R. Hidayat, “Quality f Service (QoS) n 4G Telkomsel Networks In Soreang,” pp. 145–148
  30. I. Strelkovskaya and R. Zolotukhin, “Research of Low-Bandwidth Radionetworks Qos Parameters,” Inf. Telecommun. Sci., vol. 0, no. 1, pp. 77–81, 2020, doi: 10.20535/2411-2976.12020.77-81
  31. H. Hendrawan, P. Sukarno, and M. A. Nugroho, “Quality of service (QoS) comparison analysis of snort IDS and Bro IDS application in software define network (SDN) architecture,” 2019 7th Int. Conf. Inf. Commun. Technol. ICoICT 2019, pp. 1–7, 2019, doi: 10.1109/ICoICT.2019.8835211
  32. N. Rao et al., “Analysis of the effect of QoS on video conferencing QoE,” 2019 15th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2019, pp. 1267–1272, 2019, doi: 10.1109/IWCMC.2019.8766591
  33. A. S. Sadeq, R. Hassan, S. S. Al-Rawi, A. M. Jubair, and A. H. M. Aman, “A Qos Approach for Internet of Things (Iot) Environment Using Mqtt Protocol,” 2019 Int. Conf. Cybersecurity, ICoCSec 2019, pp. 59–63, 2019, doi: 10.1109/ICoCSec47621.2019.8971097
  34. A. Ubaidillah, A. Fiqhi, K. Handoko, and S. I. Kholida, “Improving Coverage and Signal Quality in Cellular Communications for Rural Areas,” Int. Jour. of Science Engineering and Information Technology, vol. 07, no. 01, 2022

Last update:

No citation recorded.

Last update: 2025-01-25 19:30:02

No citation recorded.