skip to main content

PENERAPAN DETEKSI GARIS PADA AGV MENGGUNAKAN METODE HSV

*Yulius Dani Saputra  -  Program Studi Teknik Elektro, Fakultas Teknik, Universitas Katolik Soegijapranata, Indonesia
Florentinus Budi Setiawan  -  Program Studi Teknik Elektro, Fakultas Teknik, Universitas Katolik Soegijapranata, Indonesia
Dikirim: 23 Sep 2023; Diterbitkan: 1 Des 2023.
Akses Terbuka Copyright (c) 2023 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari

Dalamperkembangan teknologisaatini,khususnya disektorindustri,robotdengankecerdasanbuatanmengemban peranpentingdalammeningkatkan efisiensiwaktukerjamanusia.PenelitianinimenciptakansebuahrobotAGVyang dilengkapisistemkecerdasanbuatan,menggunakan kamerasebagaisensorvisualuntukmendeteksi garislintasan sebagaipanduannavigasi.RobotAGVinimemanfaatkanOpenCVuntukpemrosesancitradenganmetodefilterwarna HSV.Metodeinimencakup teknikmorfologi danGaussianbluruntukmengenali garislintasanyangakandilalui. Setelah  prosesidentifikasijalur,  robot  AGV  akan  bergerak  sesuai  jalur  yang  terdeteksioleh  kamera.Pengujian perangkatkeras  dilakukandi  laboratorium,bahwamodenavigasirobotAGV  berdasarkanmetode  HSV  mampu berfungsibaikdanmenghasilkantingkatakurasideteksijaluryangtinggi.

Fulltext View|Download
Kata Kunci: AGV, Open CV, Object Detection, HSV, Raspberry Pi

Article Metrics:

  1. F. B. Setiawan, O. J. Aldo Wijaya, L. H. Pratomo, and S. Riyadi, “Sistem Navigasi Automated Guided Vehicle Berbasis Computer Vision dan Implementasi pada Raspberry Pi,” Jurnal Rekayasa Elektrika, vol. 17, no. 1, pp. 7–14, 2021, doi: 10.17529/jre.v17i1.18087
  2. M. De Ryck, M. Versteyhe, and F. Debrouwere, “Automated guided vehicle systems, state-of-the-art control algorithms and techniques,” J Manuf Syst, vol. 54, no. December 2019, pp. 152–173, 2020, doi: 10.1016/j.jmsy.2019.12.002
  3. Sumardi, M. Taufiqurrahman, and M. A. Riyadi, “Street mark detection using raspberry pi for self-driving system,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 16, no. 2, pp. 629–634, 2018, doi: 10.12928/TELKOMNIKA.v16i2.4509
  4. C. Liu, J. Tan, H. Zhao, Y. Li, and X. Bai, “Path planning and intelligent scheduling of multi-AGV systems in workshop,” Chinese Control Conference, CCC, pp. 2735–2739, 2017, doi: 10.23919/ChiCC.2017.8027778
  5. B. Xu and D. Wang, “Magnetic Locating AGV Navigation Based on Kalman Filter and PID Control,” Proceedings 2018 Chinese Automation Congress, CAC 2018, pp. 2509–2512, 2019, doi: 10.1109/CAC.2018.8623691
  6. S. H. Bach and S. Y. Yi, “An Efficient Approach for Line-Following Automated Guided Vehicles Based on Fuzzy Inference Mechanism,” Journal of Robotics and Control (JRC), vol. 3, no. 4, pp. 395–401, 2022, doi: 10.18196/jrc.v3i4.14787
  7. Á. Cservenák, “Motion Planning for Automated Guided Vehicle,” Acta Technica Corviniensis - Bulletin of Engineering, vol. 11, no. 4, pp. 33–38, 2018, [Online]. Available: https://search.proquest.com/docview/2132669330?accountid=26540%0Ahttp://link.periodicos.capes.gov.br/sfxlcl41?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=article&sid=ProQ:ProQ%3Aengineeringjournals&atitle=MOTION+PLANNING+FOR+AUTOMAT
  8. A. Khedkar, K. Kajani, S. Banthia, B. N. Jagdale, M. Kulkarni, and B. E. Student, “Automated Guided Vehicle System with Collision Avoidance and Navigation in Warehouse Environments,” International Research Journal of Engineering and Technology, no. May, pp. 5442–5448, 2020, [Online]. Available: www.irjet.net
  9. F. Irsyadi, D. N. Pratomo, S. Julianto, M. S. Anwar, and A. A. Paripurna Barus, “Desain dan Implementasi Sistem Navigasi pada Automated Guided Vehicle (AGV),” Jurnal Listrik, Instrumentasi dan Elektronika Terapan (JuLIET), vol. 2, no. 1, 2021, doi: 10.22146/juliet.v2i1.64830
  10. Ajib Susanto, Yupie Kusumawati, Ericsson Dhimas Niagara, and Christy Atika Sari, “Convolutional Neural Network Dalam Sistem Deteksi Helm Pada Pengendara Motor,” Seminar Nasional Teknologi dan Multidisiplin Ilmu (SEMNASTEKMU), vol. 2, no. 1, pp. 91–99, 2022, doi: 10.51903/semnastekmu.v2i1.158
  11. J. Naranjo-Torres, M. Mora, R. Hernández-García, R. J. Barrientos, C. Fredes, and A. Valenzuela, “A review of convolutional neural network applied to fruit image processing,” Applied Sciences (Switzerland), vol. 10, no. 10, 2020, doi: 10.3390/app10103443
  12. K. Selvaraj, S. Alagarsamy, and M. Dhilipkumar, “Raspberry Pi based automatic door control system,” 2021 3rd International Conference on Signal Processing and Communication, ICPSC 2021, no. May, pp. 652–656, 2021, doi: 10.1109/ICSPC51351.2021.9451687
  13. G. Chandan, A. Jain, and H. Jain, “Proceedings of the 3rd International Conference on Inventive Research in Computing Applications, ICIRCA 2021,” Proceedings of the 3rd International Conference on Inventive Research in Computing Applications, ICIRCA 2021, no. Icirca, pp. 1305–1308, 2021
  14. H. M. Ahmed and R. T. Rasheed, “A Raspberry PI Real-Time Identification System on Face Recognition,” Proceedings of 2020 1st Information Technology to Enhance E-Learning and other Application Conference, IT-ELA 2020, pp. 89–93, 2020, doi: 10.1109/IT-ELA50150.2020.9253107
  15. G. Anand and A. K. Kumawat, “Object detection and position tracking in real time using Raspberry Pi,” Mater Today Proc, vol. 47, no. xxxx, pp. 3221–3226, 2021, doi: 10.1016/j.matpr.2021.06.437
  16. S. Syukriyadin, S. Syahrizal, G. Mansur, and H. P. Ramadhan, “Permanent magnet DC motor control by using arduino and motor drive module BTS7960,” IOP Conf Ser Mater Sci Eng, vol. 352, no. 1, 2018, doi: 10.1088/1757-899X/352/1/012023
  17. A. Maarif and N. R. Setiawan, “Control of dc motor using integral state feedback and comparison with pid: Simulation and arduino implementation,” Journal of Robotics and Control (JRC), vol. 2, no. 5, pp. 456–461, 2021, doi: 10.18196/jrc.25122
  18. A. Aqthobilrobbany, A. N. Handayani, D. Lestari, Muladi, R. A. Asmara, and O. Fukuda, “HSV Based Robot Boat Navigation System,” CENIM 2020 - Proceeding: International Conference on Computer Engineering, Network, and Intelligent Multimedia 2020, pp. 269–273, 2020, doi: 10.1109/CENIM51130.2020.9297915
  19. N. K. Hamzidah, M. M. Parenreng, J. Teknik, P. Negeri, and U. Pandang, PROSES IDENTIFIKASI OBJEK PADA CITRA SEL LEUKOSIT DARAH MENGGUNAKAN TEKNIK PENGOLAHAN CITRA DIGITAL
  20. F. Triatmojo, B. Sugandi, P. N. Batam, T. Mekatronika, and J. A. Yanin, “Robot Pengikut Posisi dengan Menggunakan Filter Warna HSV,” 2018
  21. “Jurnal Vocational Teknik Elektronika dan Informatika”, [Online]. Available: http://ejournal.unp.ac.id/index.php/voteknika/index
  22. R. Risfendra, A. A. Akbar, and F. Firdaus, “Sistem Pergerakan dan Deteksi Pada Robot Sepak Bola Beroda Berbasis Image Processing dengan Penerapan Multivision,” INVOTEK: Jurnal Inovasi Vokasional dan Teknologi, vol. 20, no. 3, pp. 31–42, Oct. 2020, doi: 10.24036/invotek.v20i3.830
  23. D. Zanuar, E. Prastya, D. Putra Pamungkas, and R. K. Niswatin, “Implementasi Metode Gaussian Filter Dan Median Filter Untuk Penghalusan Gambar.”

Last update:

No citation recorded.

Last update: 2025-01-26 19:51:26

No citation recorded.