skip to main content

ANALYSIS AN EXTRA-HIGH VOLTAGE TRANSMISSION LINE INTEGRATED WITH ZIGBEE SENSOR NETWORK

*Hariani Ma'tang Pakka orcid scopus publons  -  Jurusan Teknik Elektro, Fakultas Teknik, Universitas Muslim Indonesia, Indonesia
M. Anas Masa  -  Jurusan Teknik Elektro, Fakultas Teknik, Universitas Muslim Indonesia, Indonesia
Andi Syarifuddin  -  Jurusan Teknik Elektro, Fakultas Teknik, Universitas Muslim Indonesia, Indonesia
Ahmed Saeed Al Ghamdi  -  Jurusan Teknik Elektro, Fakultas Teknik, Universitas Muslim Indonesia, Indonesia
Saidah Suyuti  -  Jurusan Teknik Elektro, Fakultas Teknik, Universitas Muslim Indonesia, Indonesia
Dikirim: 16 Jun 2024; Diterbitkan: 30 Jan 2025.
Akses Terbuka Copyright (c) 2025 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari
The abundance and variety of sensor nodes in intelligent transmission lines make them unique and distinguishable. These nodes are essential components of the system, providing valuable data and information that enable efficient and effective communication. Intelligent transmission lines are characterized by their abundance and diverse range of sensor nodes. Comparing and analyzing performance metrics for star, tree, and mesh networks with the same attribute configuration includes application layer end-to-end latency and MAC layer throughput. By utilizing the ZigBee protocol in conjunction with OPNET, this is accomplished via the modeling and simulation of a wireless sensor network structure for intelligent transmission lines. An extra-high voltage transmission line that integrates multiple embedded sensing nodes was equipped with an appropriate ZigBee wireless network architecture. Following the integration of the tower's scenarios and results simulation of OPNET, the compatibility between mesh and ZigBee wireless network topology of the transmission lines, comprising several embedded sensing nodes, has been confirmed.
Fulltext
Kata Kunci: Sensor nodes, Intelligent transmission lines, ZigBee protocol, Wireless sensor network, OPNET simulation

Article Metrics:

  1. J. Yu, M. Liu, J. Lin, and W. Ou, “Visual Cost System and Intelligent Analysis Method of Power Grid Operation and Maintenance Project for Enterprise Precision Control,” 2022 IEEE 2nd Int. Conf. Mob. Networks Wirel. Commun., pp. 1–4, 2022, doi: 10.1109/ICMNWC56175.2022.10032033
  2. P. N. Ayambire et al., “An Improved Fault Detection Method for Overhead Transmission Lines Based on Differential Tunnel Magnetoresistive Sensor Array Approach Une méthode améliorée de détection des défauts pour les lignes de transmission aériennes basée sur une approche de résea,” IEEE Can. J. Electr. Comput. Eng., vol. 45, no. 4, pp. 409–417, 2022, doi: 10.1109/ICJECE.2022.3213501
  3. S. U. L. Wide-area, “Transmission Tower Tilt Monitoring,” vol. 21, no. 2, pp. 1100–1107, 2021, doi: 10.1109/JSEN.2020.3004817
  4. U. Fiber et al., “Improving the Temperature and Vibration Robustness of Fiber Optic Current Transformer,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, 2022, doi: 10.1109/TIM.2021.3139700
  5. P. T. Line, “Phi-OTDR Based On-Line Monitoring of Overhead,” J. Light. Technol., vol. 39, no. 15, pp. 5163–5169, 2021, doi: 10.1109/JLT.2021.3078747
  6. S. Dey, R. Bhattacharyya, S. E. Sarma, N. C. Karmakar, and S. Member, “A Novel ‘ Smart Skin ’ Sensor for Chipless RFID-Based Structural Health Monitoring Applications,” vol. 8, no. 5, pp. 3955–3971, 2021, doi: 10.1109/JIOT.2020.3026729
  7. M. Ferracini et al., “Design of a Wireless Sensor Node for Overhead High Voltage Transmission Power Lines,” IEEE Trans. Power Deliv., vol. 38, no. 2, pp. 1472–1482, 2023, doi: 10.1109/TPWRD.2022.3216915
  8. A. Karaagac, E. De Poorter, and J. Hoebeke, “In-Band Network Telemetry in Industrial Wireless Sensor Networks,” IEEE Trans. Netw. Serv. Manag., vol. 17, no. 1, pp. 517–531, 2020, doi: 10.1109/TNSM.2019.2949509
  9. J. H. Cheng, C. L. Lu, G. Zhang, B. Wang, and J. Fang, “Design of Motor Intelligent Monitoring and Fault Diagnosis System Based on LoRa,” IEEE Trans. Appl. Supercond., vol. 31, no. 8, pp. 1–4, 2021, doi: 10.1109/TASC.2021.3091094
  10. G. A. López-ramírez, A. Aragón-zavala, and S. Member, “Wireless Sensor Networks for Water Quality Monitoring : A Comprehensive Review,” vol. 11, no. August, 2023, doi: 10.1109/ACCESS.2023.3308905
  11. H. Taleb, A. Nasser, G. Andrieux, N. Charara, and E. M. Cruz, “Energy Consumption Improvement of a Healthcare Monitoring System : Application to LoRaWAN,” IEEE Sens. J., vol. 22, no. 7, pp. 7288–7299, 2022, doi: 10.1109/JSEN.2022.3150716
  12. D. Gao, L. Wang, and B. Hu, “Spectrum Efficient Communication for Heterogeneous IoT Networks,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 6, pp. 3945–3955, 2022, doi: 10.1109/TNSE.2022.3150575
  13. P. W. T. Pong, “Magnetic-Field-Sensing-Based Approach for Current Reconstruction , Sag Detection , and Inclination,” vol. 55, no. 7, 2019, doi: 10.1109/TMAG.2019.2905567
  14. A. Sobchuk, “Analytical Aspects of Providing a Feature of the Functional Stability According to the Choice of Technology for Construction of Wireless Sensor Networks,” 2019 IEEE Int. Conf. Adv. Trends Inf. Theory, pp. 102–106, 2019, doi: 10.1109/ATIT49449.2019.9030474
  15. F. Farha, “Timestamp Scheme to Mitigate Replay Attacks in Secure ZigBee Networks,” IEEE Trans. Mob. Comput., vol. 21, no. 1, pp. 342–351, 2022, doi: 10.1109/TMC.2020.3006905

Last update:

No citation recorded.

Last update: 2025-01-30 16:25:16

No citation recorded.