BibTex Citation Data :
@article{Transmisi67355, author = {Dinda Septiani dan Mohammad Fadhli dan Sopian Soim}, title = {CNN ALGORITHM OPTIMIZATION FOR CLASSIFYING NUMBERS IN HANDWRITING}, journal = {Transmisi: Jurnal Ilmiah Teknik Elektro}, volume = {27}, number = {1}, year = {2025}, keywords = {handwritten character recognition; Convolutional Neural Network; deep learning; model optimization;}, abstract = { Handwritten numeral recognition is an important challenge in image processing, with wide applications in areas such as document processing and data automation. This research aims to optimize the performance of Convolutional Neural Network (CNN) model in classifying handwritten numerals on MNIST dataset. In this research, experiments were conducted with variations in the number of CNN layers to evaluate their effect on model accuracy. The results show that the model with 4 convolutional layers achieves the highest accuracy of 92.41%, which signifies a significant improvement in the model's ability to extract important features from the image compared to the model with fewer layers. This research also applied the best model to a website that allows users to recognize handwritten numerals in real-time. This provides practical benefits in the development of automatic character recognition systems and shows how this technology can be applied directly in everyday life. }, issn = {2407-6422}, pages = {57--63} doi = {10.14710/transmisi.27.1.57-63}, url = {https://ejournal.undip.ac.id/index.php/transmisi/article/view/67355} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2025-03-01 01:32:12
Transmisi: Jurnal Ilmiah Teknik Elektro dan Departemen Teknik Elektro, Universitas Diponegoro dan Editor berusaha keras untuk memastikan bahwa tidak ada data, pendapat, atau pernyataan yang salah atau menyesatkan dipublikasikan di jurnal. Dengan cara apa pun, isi artikel dan iklan yang diterbitkan dalam Transmisi: Jurnal Ilmiah Teknik Elektro adalah tanggung jawab tunggal dan eksklusif masing-masing penulis dan pengiklan.
Formulir Transfer Hak Cipta dapat diunduh di sini: [Formulir Transfer Hak Cipta Transmisi]. Formulir hak cipta harus ditandatangani dan dikirim ke Editor dalam bentuk surat asli, dokumen pindaian atau faks:
Dr. Darjat (Ketua Editor)Departemen Teknik Elektro, Universitas Diponegoro, IndonesiaJl. Prof. Sudharto, Tembalang, Semarang 50275 IndonesiaTelepon/Facs: 62-24-7460057Email: transmisi@elektro.undip.ac.id