Optimization and molecular characterization of syngas fermenting anaerobic mixed microbial consortium TERI SA1

DOI: https://doi.org/10.14710/ijred.0.X.xxx-xxx

Article Info
Submitted: 03-05-2017
Published:
Section: Articles

The present study focused on the optimization and molecular characterization of anaerobic mixed consortium TERI SA1 that can utilize synthesis gas as sole carbon source for volatile fatty acids production. Optimization study using Box- Behnken design and RSM methodology was carried out in order to investigate the effect of three medium factors on metabolite formation from synthesis gas bioconversion: (yeast extract (0.0–2.0 g/L), ammonium chloride (0.0–1.5 g/L) and corn steep liquor (0.0-10 g/L). Optimized parameters enhanced the production of volatile fatty acids upto 3.9 g/L, which indicated an increase of around 289 % from the non-optimized conditions. Furthermore, two approaches were used for isolation and phylogenetic identification of anaerobic consortium TERI SA1 involving 16S rRNA sequencing of culturable bacterial isolates as well as meta-genomic approach (by making a 16S rRNA gene library of total community DNA). Based on similarity search with NCBI database selected positive clones were most closely related with acetogenic microorganisms Clostridium scatalogenes, Clostridium carboxydivorans, Clostridium drakei and Uncultured Clostridium sp. and strains isolated by culturable method (ASH051 and ASH 052) with Clostridium scatalogenes, and Clostridium drakei. These strains have previously been reported for acetic acid production from syngas bioconversion.

Keywords

Synthesis gas; Consortium; Volatile fatty acids; Optimization; Characterization

Abubackar, H.N., Veiga, M.C., Kennes, C. (2011). Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod. Biorefin. 5, 93–114.

Bredwell, M.D., Srivastava, P., Worden, R.M. (1999). Reactor design issues for synthesis-gas fermentations. Biotechnol. Prog. 15, 834–844.

Bruant, G., Lévesque, M.J., Peter. C., Guiot, S.R., Masson, L. (2010). Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7. PLoS One, 5, 1–12.

Cotter, J.L., Chinn, M.S., Grunden, A.M. (2009). Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzyme Microb. Technol, 44(5), 281-88.

Dalal, J., Sarma, P.M., Mandal, A.K., Lal, B. (2013). Response surface optimization of poly (3-hydroxyalkanoic acid) production using oleic acid as an alternative carbon source by Pseudomonas aeruginosa. Biomass and Bioenrg, 54, 67-76.

Demain, A.L., Davies, J.E. (1999). Manual of ind. Microbiol. Biotechnol. 2nd edition. Washington DC: ASM press.

Frostl, J.M., Seifritz, C., Drake, H.L. (1996). Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum. J. Bacteriol, 178(1), 4597-03.

Gaddy, J.L., Clausen, W.C. (1992). Clostridium ljungdahlii, an Anaerobic Ethanol and Acetate Producing Microorganism. U.S. Patent 5173429.

Gao, J., Atiyeh, H.K., Phillips, J.R., Wikins, M.R., Huhnke, R.L. (2013). Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei. Bioresour. Technol, 147(1), 508–15.

Guo, Y., Xu, J., Zhang, Y., Xu, H., Yuan, Z., Li, D. (2010). Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour. Technol, 101(22), 8784–89.

Hurst, K.M., Lewis, R.S. (2010). Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation. Biochem. Eng. J. 48, 159–165.

Kennedy, M.J., Krouse, D. (1999). Strategies for improving fermentation medium performance: A Review. J. Ind. Microbial. Biotechnol, 23(6), 456-75.

Klasson, K.T., Ackerson, C.M.D., Clausen, E.C., Gaddy, J.L. (1992). Biological conversion of synthesis gas to fuels. Int. J. Hydrogen Energy, 7(4), 281-88.

Kundiyana, D.K., Huhnke, R.L., Maddipati, P.B., Atiyeh, H.K., Wilkins, M.R. (2010). Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation. Bioresour. Technol, 101(24), 9673–80.

Kundiyana, D.K., Wilkins, M.R., Maddipati, P.B., Huhnke, R.L. (2011). Effect of temperature, pH and buffer on syngas fermentation using Clostridium strain P11. Bioresour. Technol, doi: 10.1016/j.biortech.2011.02.232.

Kusel, K., Dorsch, T., Acker, G., Stackebrandt, E., Drake, H.L. (2000). Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int. J. Syst. Evol. Microbial, 50, 537–546.

Liggett, R.W., Koffler, H. (1948). Corn steep liquor in microbiology. Microbiol. Molec. Biol. Rev, 12(4), 297–11.

Liou, J.S.C., Balkwill, D.L., Drake, G.R., Tanner, R.S. (2005). Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int. J. Syst. Evol. Microbial, 55, 2085–2091.

Liu, K., Atiyeh, H.K., Tanner, R.S., Wilkins, M.R., Huhnke, R.L. (2012). Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi. Bioresour. Technol. 104, 336–341.

Liu, K., Atiyeh, H.K., Stevenson, B.S., Tanner, R.S., Wilkins, M.R., Huhnke, R.L. (2013). Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresour. Technol. 152, 337–346.

Lundie, L.L., Drake, H.L. (1984). Development of a minimally defined medium for the acetogen Clostridium thermoaceticum. J. Bacteriol. 159, 700-03.

Maddipati, P., Atiyeh, H.K., Bellmer, D.D., Huhnke, R.L. (2011). Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresour. Technol. 102, 6494–6501.

Mohammadi, M., Younesi, H., Najafpour, G.D., Mohamed, A.R. (2012). Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J. Chem. Technol. Biotechnol. 87, in press, http://dx.doi.org/10.1002/jctb.3712.

Montgomery, D.C. (2003). Design and analysis of experiments, sixth ed. Wiley and Sons. New York.

Muller, V. (2003). Energy conservation in acetogenic bacteria. Appl. Environ. Microbial. 69, 6345–6353.

Murthy, M., Swaminathan, T., Rakshit, S.K., Kosugi, Y. (2000). Statistical optimization of lipase catalyzed hydrolysis of methyloleate by RSM. Bioproc. Biosys. Eng. 22, 35-9.

Savage, M.D., Drake, H.L. (1986). Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium. J. Bacteriol, 165(1), 315-8.

Saxena, J., Tanner, R.S. (2012). Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World J. Microbial. Biotechnol. 28, 1553–1561.

Shenkman, R.M. (2014). C. Carboxidovorans culture advances and the effects of pH, temperature, and producer gas on key enzymes. [M.S. thesis], OkState.

Silveira, M.N., Wisbeck, E., Hoch, I., Jonas, R. (2001). Production of glucose-fructose oxidoreductase and ethanol by Zimomonas mobilis ATCC29191 in medium containing corn steep liquor as a source of vitamins. Appl. Microbiol. Biotechnol. 55, 442-45.

Singh, S., Sarma, P.M., Lal, B. (2014). Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum TERI S7 from oil reservoir flow pipeline. Int. J. Hydrogen Energ. 39, 4206–4214.

Singla, A., Verma, D., Lal, B., and Sarma, P.M. (2014). Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol. Bioresour. Technol. 172, 41-49.

Ukpong, M.N., Atiyeh, H.K., De Lorme, M.J.M., Liu, K., Zhu X., Tanner R.S., Wilkins, M.R., Stevenson, B.S. (2012). Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor. Biotechnol. Bioeng. 109, 2720–2728.

Winnepenninckx, B., Backelgau, T., Wachter, D.R. (1993). Extractions of high molecular weight DNA from molluscs. Trends Genet. 9, 407.

Yang, H.C., Drake, H.L. (1990). Differential effects of sodium on hydrogen- and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl. Environ. Microbiol. 56, 81-86.