PEMBUATAN SELULOSA TERASETILASI DARI PULP BAMBU BETUNG (Dendrocalamus asper) SERTA PENGARUHNYA TERHADAP SIFAT MEKANIS BIOKOMPOSIT POLIPROPILENA

DOI: https://doi.org/10.14710/reaktor.17.1.25-35
Copyright (c) 2017 REAKTOR

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 08-03-2017
Published: 05-05-2017
Section: Research Article
Fulltext PDF Tell your colleagues Email the author

Abstract

 

ACETYLATED CELLULOSE FROM BETUNG BAMBOO (Dendrocalamus asper) PULP PRODUCTION AND ITS EFFECT ON MECHANICAL PROPERTIES OF POLYPROPYLENE COMPOSITES. The utilization of natural fiber as reinforcing agent for biocomposite products have some drawbacks, such as its hydrophilicity that are incompatible with PP. Isolation from bundle fibers into micro fibers could improves the biocomposite properties. However, more moisture absorption of micro fiber makes it difficult to handle. Therefore, modification with acetylation is needed to facilitate good interfacial adhesion between cellulose and PP. The objectives of this research are to obtain acetylated micro fibers from betung bamboo pulp for reinforcing agent and to investigate the effect of acetylated cellulose on mechanical properties of PP biocomposites. Acetate anhydride as acetylating agent and sulfuric acid as a catalyst were used for acetylation process. Acetylated cellulose from betung bamboo pulp with fibrous form, hydrophobic condition, and relatively on high aspect ratio was obtained in 2% of catalyst concentration and 120 of reaction time. Strength enhancement were achieved up to 79 and 87% for tensile while 24 and 69% for flexural, respectively for biocomposites with 10% and 20% of acetylated cellulose than that PP. Modulus improvement were obtained up to 53 and 70% for tensile while 96 and 149% for flexural, respectively for biocomposites with 10% and 20% of acetylated cellulose than that PP.

 

Keywords: acetylation; betung bamboo; biocomposite; polypropylene; cellulose

 

 

Abstrak

 

Penerapan serat alam untuk produk biokomposit memiliki beberapa kelemahan terutama perbedaan sifat antara matrik dengan serat yang menyebabkan ikatan antar muka yang kurang baik. Pengolahan serat bundle menjadi serat mikro dapat meningkatkan sifat-sifat biokomposit, akan tetapi sifat dari serat mikro yang mudah menyerap air membuat penanganannya menjadi lebih komplek. Modifikasi kimia serat dengan asetilasi merupakan upaya untuk meningkatkan keterbasahan dan ikatan antar muka dengan matrik PP. Tujuan dari penelitian ini adalah untuk memperoleh serat mikro terasetilasi dari pulp bambu betung agar dapat digunakan sebagai penguat dan mempelajari pengaruhnya terhadap sifat mekanis biokomposit PP. Proses asetilasi menggunakan asetat anhidrat sebagai bahan pengasetilasi dan asam sulfat sebagai katalis. Serat mikro bambu betung terasetilasi yang bersifat hidrofobik dan memiliki aspek rasio tinggi diperoleh pada jumlah katalis 2% dengan waktu 120 menit. Peningkatan kuat tekuk mencapai 76 dan 87% sedangkan kuat tarik sekitar 24 dan 69% masing-masing untuk biokomposit dengan selulosa terasetilasi 10% dan 20% terhadap PP murni. Keteguhan tarik meningkat hingga 53 dan 70% sedangkan keteguhan tekuk mencapai 96 dan 149% berturut-turut untuk biokomposit dengan 10% dan 20% selulosa terasetilasi dibandingkan PP. Selulosa terasetilasi dari pulp bambu betung mampu berfungsi sebagai bahan pembentuk inti untuk biokomposit PP.

 

Kata kunci: asetilasi; bambu betung; biokomposit; polipropilena; selulosa


Keywords

reactor;catalyst;biocomposite

  1. Wida Banar Kusumaningrum 
    Pusat Penelitian Biomaterial LIPI (Research Center of Biomaterial LIPI), Indonesia
  2. R Rochmadi 
  3. S Subyakto 
    Pusat Penelitian Biomaterial LIPI Jl. Raya Bogor Km. 46, Cibinong, Bogor

    Pusat Penelitian Biomaterial LIPI  Jl. Raya Bogor Km. 46, Cibinong, Bogor

  1. Abdul.H.P.S., (2014), Production and Modification of Nanofibrillated Cellulose using Various Mechanical Process, Carbohydrate Polymer, 99, pp. 649-665
  2. Albano, C., Gonzales, J., Ichazo, M., Velasco, N., Guevara, J., Mantia, F.L., (2003), Thermal Stability of Polypropylene with Acetylated Sisal Fiber : Romero Garcia Kinetic Method, Polymer Bulletin, 51, pp. 245-254
  3. Al-Oqla.F, Sapuan. S.M., (2014), Natural Fiber Reinforced Polymer Composites in Industrial Applications: Feasibility of Date Palm Fibers for Sustainable Automotive Industry, Journal of Cleaner Production, 66, pp. 347-354
  4. Ashori, A., Babaee, M., Jonoobi, M., Hamzeh, Y., (2014), Solvent Free Acetylation of Cellulose Nanofibers for Improving Compatibility and Dispersion, Carbohydrate Polymer, 102, pp. 369-375
  5. Bledzki, A.K., Mamun, A.A., Lucka-Gabor,M.,Gutowski, V.S., (2008), The effect of acetylation on properties of flax fibre and its polypropylene composites, Express Polymer Letters, 2 (6), pp. 413-422
  6. Chattopadhyay, S.K., Khandal, R.K., Uppaluri, R., Ghoshal, A.K., (2010), Bamboo Fiber Reinforced Polypropylene Composites and Their Mechanical, Thermal, and Morphological Properties, Journal of Applied Polymer Science, 119, pp. 1619-1619
  7. Das, A.M., Ali,A.A., Hazarika, M.P., (2014), Synthesis and Characterization of Cellulose Acetate from Rice Husk: Eco-friendly condition, Carbohydrate Polymer, 112, pp. 342-349
  8. Ernest-Saunders, R., Pawlak, J.J., Lee, J.M., (2014), Properties of Surface Acetylated Microfibrillated Cellulose Relative to Intra and Inter Fibril Bonding, Cellulose, 21, pp. 1541-1552
  9. Gaol, M.Lumbon, Sitorus, R., Yanthi, S., Surya, I., Manurung, R., (2013), Pembuatan Selulosa Asetat dari Alfa Selulosa Tandan Kosong Kelapa Sawit, Jurnal Teknik Kimia, 2 (3)
  10. Holbery.J.dan Houston D., (2006), Batural Fiber Reinforced Polymer Composites in Automotive Applications, JOM, pp. 80-86
  11. Hufenbagh.W, Bohm.R, Thieme.M, Winkler.A, Mader.E, Rausch.J, Schade.M., (2011), Polypropylene/Glass fibre 3D textile Reinforced composites for automotive Applications, Material and Design, 32, pp. 1468-1476
  12. Jonoobi, M., Harun, J., Mathew, A.P., Hussein, M.Z., Oksman, K., (2010), Preparation of Cellulose Nanofibers with Hydrophobic Surface Characteristic, Cellulose, 17, pp. 299-307
  13. Kompella,M.K., dan Lambros,J., (2002), Micromechanical Characterization of Cellulose Fibers, Polymer Testing, 21, pp. 523-530
  14. Krisdianto., (2012), Pengaruh Asetilasi Terhadap Penyerapan Uap Air pada Dua Jenis Kayu Tropis, Jurnal Penelitian Hasil Hutan, 30 (2), pp. 94-99
  15. Li, H., Xiuqin, Z., Yongxin, D., Dujin, W., Lin, L., Shouke, Y., (2004), Influence of crystallization temperature on the morphologies of isotactic polypropylene single-polymer composite, Polymer, 45, pp. 8059-8065
  16. Li, Xue, Lope. G.T., Panigrahi. S, (2007), Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites (A Review), Journal Polymer Environemnt, 15, pp. 25-33
  17. Liu.D, Song.J, Anderson. D.P, Chang. P.R, Hua.Y, (2012), Bamboo fiber and its reinforced composites : structure and properties, Cellulose, 19, pp. 1449-1480
  18. Luz, S.M., Tio, D.J., Rocha,G.J.M., Goncalves, A.R., Del Arvo, A.P., (2008), Cellulose and Cellulignin from Sugarcane Bagasse Reinforced Polypropylene Composites : Effect of acetylation on mechanical and thermal properties, Composites Part A, 39, pp. 1362-1369
  19. Nwadiogbu, J.O., Okoye, P.A.C., Ajiwe, V.I., Nnaji, N.J.N., (2014), Hydrophobic treatment of corn cob by acetylation: Kinetics and thermodynamic studies, Journal of Environmental Chemical Engineering, 2, pp. 1699-1704
  20. Mi, Y., Chen, X., Guo, Q., (1997), Bamboo Fiber Reinforced Polypropylene Composites: Crystallization and Interfacial Morphology, John Wiley and Sons, pp. 1267-1273
  21. Popescu, C., Larsson, P.T., Olaru, N., Vasile, C., (2012), Spectroscopy study of acetylated kraft pulp fibers, Carbohydrate Polymer, 88, pp. 530-536
  22. Ramsden, M.J., Blake, F.S.R., (1997), A Kinetic Study of The Acetylation of Cellulose, Hemicellulose, and Lignin Components in Wood, Wood Science and Technology, 31,pp. 45-50
  23. Rodionova, G., Lenes, M., Eriksen. Gregersen, (2011), Surface Chemical Modification of Microfibrillated Cellulose: Improvement of Barrier Properties for Packaging Applications, Cellulose, 18, pp. 127-134
  24. Subyakto, Hermiati, E., Masruchin, N., Ismadi, Subiyanto, B., (2011), Preparation of Micro/nano Fibers Of Betung Bamboo (Dendrocalamus asper) and Development of Their Biocomposites, Prosiding Seminar Internasioanal Bambu, pp. 87-99
  25. Thielemans. B.L.W, Dufresne.A, Chaussy.D, Belgacem.M.N, (2008), Surface functionalization of cellulose fibers and their incorporation on renewable polymer matrices, Composites Science and Technology, 68, pp. 3193-3201
  26. Widyaningsih, S., Radiman, C.L., (2007), Pembuatan Selulosa Asetat dari Pulp Kenaf (Hibiscus cannabius), Molekul, 2(1), pp. 13-16
  27. Wildan, A., (2010), Studi Proses Pemutihan Serat Kelapa sebagai Reinforced Fiber, Tesis, Universitas Diponegoro
  28. Wise,L.E., Murphy. M., D’Addieco. A.A., (1946), Chlorite holocellulose, its fraction and bearing on summative wood analysis and studies on the hemicelluloses, Paper Trade Journal, 122, pp. 11-19
  29. Yang, Z., Xu, S., Ma, X., Wang, S., (2008), Characterization and Acetylation Behaviour of Bamboo Pulp, Wood Science Technology, 42, pp. 621-632
  30. Zhang, G., Huang, K., Jiang, X., Huang, D., Yang, Y., (2013), Acetylation of Rice Straw for Thermoplastic Applications, Carbohydrate Polymer, 96, pp. 218-226
  31. Zimmermann T., Pohler, E., Geiger, T, (2004), Cellulose Fibrils for Polymer Reinforcement, Advanced Engineering Materials, 6 (9), pp. 754-761
  32. Zugenmaier, P., (2008), Crystalline Cellulose and Cellulose Derivatives: Characterization and Structure, John Wiley and Sons, pp. 31