Uji Kinerja Burner dan Tabung Reaktor Flame Untuk Proses Spray Pyrolysis

DOI: https://doi.org/10.14710/reaktor.17.2.67-73
Copyright (c) 2017 REAKTOR
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Article Info
Submitted: 05-04-2017
Published: 05-06-2017
Section: Research Article

Abstract

 

PERFORMANCE EVALUATION OF BURNER AND THE REACTOR TUBE OF FLAME FOR A SPRAY PYROLYSIS PROCESS. Flame spray pyrolysis is a versatile process in the syntheses of various functional materials. This work reports the performance of a diffusion flame built from a coaxial burner and a Pyrex-glass tube reactor with respect to the relatively low propane flow rates (0.1-0.8 L/min). The burner comprised of three cylindrically tubes with three inlets for fuel (propane), oxidant (oxygen) and precursor aerosol. Three flame parameters were measured, i.e. the flame height, flame temperature and reactor temperature profile, respectively. The test results showed the increase of the flame height and temperature with increasing of propane flow rate. The temperature profile measurements showed the decreasing as the height above burner increased; and temperature profile increased at the increasing propane flow rate. The reactor temperature was in the range of 36-190°C at low propane flow rates of 0.1-0.8 L/min. In conclusion, control of flame process parameters could be conducted by controlling of propane flow rate.

 

Keywords: diffusion flame burner; spray pyrolysis; flame reactor; electronic material syntheses

 

 

Abstrak

 

Pirolisis flame spray merupakan proses yang banyak digunakan untuk keperluan sintesis bahan-bahan fungsional. Makalah ini melaporkan kinerja sebuah reaktor flame difusi yang dibangun dari sebuah pembakar (burner) dan tabung reaktor silinder. Pembakar dibangun dari tiga buah silinder stainless steel yang dipasang koaksial sebagai saluran bahan bakar propana, oksidator oksigen dan aerosol prekursor. Tiga parameter proses flame yang diuji adalah tinggi flame, temperatur flame dan profil temperatur tabung reaktor. Hasil pengujian menunjukkan bahwa seiring kenaikan laju alir propana, tinggi dan temperatur flame meningkat. Pengukuran profil temperatur menunjukkan penurunan seiring kenaikan posisi dari ujung-atas pembakar; dan temperatur profil reaktor meningkat seiring dengan kenaikan laju alir propana. Temperatur reaktor berkisar 36-190°C pada laju alir propana rendah 0,1-0,8 L/min. Dapat disimpulkan bahwa pengontrolan parameter-parameter proses flame dapat dilakukan dengan pengaturan laju alir propana.

 

Kata kunci: diffusion flame burner; proses spray pyrolysis; reaktor flame; sintesis bahan elektronik

Keywords

reaktor flame, sintesis bahan elektronik, proses spray pyrolysis, diffusion flame burner.

  1. Darmawan - Hidayat 
    Departemen Teknik Elektro, FMIPA, Universitas Padjadjaran , Indonesia
  2. Ganjar Nurohman 
    Departemen Fisika, FMIPA, Universitas Padjadjaran Jl. Raya Bandung-Sumedang 45363 Km. 21 Jatinangor, Sumedang
  3. S Setianto 
    Departemen Fisika, FMIPA, Universitas Padjadjaran Jl. Raya Bandung-Sumedang 45363 Km. 21 Jatinangor, Sumedang
  4. Bambang Mukti Wibawa 
    Departemen Teknik Elektro, FMIPA, Universitas Padjadjaran Jl. Raya Bandung-Sumedang 45363 Km. 21 Jatinangor, Sumedang
  5. Nendi Suhendi 
    Departemen Teknik Elektro, FMIPA, Universitas Padjadjaran Jl. Raya Bandung-Sumedang 45363 Km. 21 Jatinangor, Sumedang

Glassman, I., Yetter, R.A., (2008), Combustion, 4th, Elsevier Inc., 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA, pp. 325 – 326.

Gröhn, A.J., Pratsinis, S.E., Wegner, K., (2012), Fluid- particle dynamics during combustion spray aerosol synthesis of ZrO2, Chemical Engineering Journal, 191 pp. 491–502.

Hidayat, D., Purwanto, A., Wang, W.-N., Okuyama, K., (2010), Preparation of size-controlled tungsten oxide nanoparticles and evaluation of their adsorption performance, Materials Research Bulletin, 45 pp. 165–173.

Hidayat, D., Widiyastuti, W., Ogi, T., and Okuyama, K., (2010), Droplet Generation and Nanoparticle Formation in Low-Pressure Spray Pyrolysis, Aerosol Science and Technology, 44 pp. 692–705.

Kammler, H.K., Mädler, L., and Pratsinis, S.E., (2001), Flame Synthesis of Nanoparticles, Chem. Eng. Technol., 24(6) pp. 583–596.

Kang, Y.C., Seo, D.J., Park, S.B., Park, H.D., (2001), Morphological and optical characteristics of Y2O3:Eu phosphor particles prepared by flame spray pyrolysis, Japan Journal of Applied Physics, 40 pp. 40834086.

Kelesidis, G.A., Goudeli, E., Pratsinis, S.E., (2017), Flame synthesis of functional nanostructured materials and devices: Surface growth and aggregation, Proceedings of the Combustion Institute, 36 pp. 29–50.

Liewhiran, C., Tamaekong, N., Wisitsoraat, A., Tuantranont, A., Phanichphant, S., (2013), Ultra-sensitive H2 sensors based on flame-spray-made Pd-loaded SnO2 sensing films, Sensors and Actuators B, 176 pp. 893– 905.

Mirzaei, A., Janghorban, K., Hashemi, B., Bonyani, M., Leonardi, S.G., Neri, G., (2016), Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by Pechini sol–gel methods, Ceramics International, 42 pp. 6136–6144.

Nathan, D.M.G.T., Boby, S.J.M., (2017), Hydrothermal preparation of hematite nanotubes/reduced graphene oxide nanocomposites as electrode material for high performance supercapacitors, Journal of Alloys and Compounds, 700 pp. 6774.

Purwanto, A., Lenggoro, I.W., Chang, H., Okuyama, K., (2006), Preparation of submicron- and nanometer- sized particles of Y2O3:Eu3+ by flame spray pyrolysis using ultrasonic and two fluid atomizers, Journal of Chemical Engineering of Japan, 39(1) pp. 6876.

Purwanto, A., Wang, W.-N., Lenggoro, I.W., and Okuyama, K., (2007), Formation and Luminescence Enhancement of Agglomerate-Free YAG:Ce3+ Submicrometer Particles by Flame-Assisted Spray Pyrolysis, Journal of The Electrochemical Society, 154 (3) pp. J91J96.

Purwanto, A., Widiyandari, H., Hidayat, D., Iskandar, F., and Okuyama, K., (2009), Facile Method for the Fabrication of Vertically Aligned ITO Nanopillars with Excellent Properties, Chemistry of Materials, 21(18) pp. 4087–4089.

Rudin, T., Wegner, K., Pratsinis, S.E., (2013), Towards carbon-free flame spray synthesis of homogeneous oxide nanoparticles from aqueous solutions, Advanced Powder Technology, 24 pp. 632–642.

Rudin, T., Wegner, K., Pratsinis, S.E., (2013), Towards carbon-free flame spray synthesis of homogeneous oxide nanoparticles from aqueous solutions, Advanced Powder Technology, 24 pp. 632–642.

Samerjai, T., Tamaekong, N., Wetchakun, K., Kruefu, V., Liewhiran, C., Siriwong, C., Wisitsoraat, A., Phanichphat, S., (2012), Flame-spray-made metal-loaded semiconducting metal oxides thick films for flammable gas sensing, Sensors and Actuators B, 171 pp. 43– 61.

Setiawan, A., Widiyastuti, Winardi, S., dan Nugroho, A., (2016), Sintesis Biomaterial Hydroxyapatite dengan Proses Flame Spray Pyrolysis disertai Penambahan Aditif Organik, Reaktor, 16(4), 189198, http://dx.doi.org/10.14710/reaktor.16.4.189198.

Strobel, R., and Pratsinis, S.E., (2007), Flame aerosol synthesis of smart nanostructured materials, J. Mater. Chem., 17 pp. 4743–4756.

Sukunta, J., Wisitsoraat, A., Tuantranont, A., Phanichphant, S., Liewhiran, C., (2017), Highly-sensitive H2S sensors based on flame-made V-substituted SnO2 sensing films, Sensors and Actuators B, 242 pp. 1095–1107.

Tamaekong, N., Liewhiran, C., Wisitsoraat, A., Tuantranont, A., Phanichphant, S., (2014), NO2 sensing properties of flame-made MnOx-loaded ZnO-nanoparticle thick film, Sensors and Actuators B, 204 pp. 239–249.

Volkov, A., Gorbova, E., Vylkova, A., Medvedev, D., Demin, A., Tsiakaras, P., (2017), Design and applications of potentiometric sensors based on proton-conducting ceramic materials. A brief review, Sensors and Actuators B, 244 pp. 1004–1015.

Wan, S., Bi, H., Zhou, Y., Xie, X., Su, S., Yin, K., Sun, L., (2017), Graphene oxide as high-performance dielectric materials for capacitive pressure sensors, Carbon, 114 pp. 209216.

Widiyastuti, W., Hidayat, D., Purwanto, A., Iskandar, F., Okuyama, K., (2010), Particle dynamics simulation of nanoparticle formation in a flame reactor using a polydispersed submicron-sized solid precursor, Chemical Engineering Journal, 158 pp. 362–367.