Application of Offshore HDPE Pipes Route Design in North Maluku Indonesia

*Franto Novico orcid scopus  -  Marine Geological Research and Development Center, Ministry of Energy and Mineral Resources, Indonesia
Indra Kurniawan  -  Directorat General of Water Resource, Ministry of Public Works and Housing, Republic of Indonesia, Indonesia
Andi Egon  -  Civil Engineeering, College of Science and Engineering, National University of Ireland Galway, Ireland
Davide Merli  -  Division of Hydraulics and Maritime Works, ENSER Srl, Italy
Received: 19 Jan 2021; Revised: 3 Feb 2021; Accepted: 13 Mar 2021; Published: 13 Mar 2021; Available online: 14 Mar 2021.
Open Access License URL: http://creativecommons.org/licenses/by-nc-sa/4.0

Citation Format:
Abstract

The lack of fresh water for the inhabitants of Maitara island is a very urgent problem to be solved. Two main factors at least must be taken into account to deliberate the right of way of subsea High-density polyethylene (HDPE) pipes, namely the hydrodynamic conditions and of a block analysis. This paper presents the study to justify the best route of subsea HDPE pipes based on hydrodynamic model analysis and concrete block strategy. The method used to analyze the best route includes 2 aspects. Firstly, the investigation method consisting of a bathymetric survey conducted by a single beam echosounder, 15 days tidal observations and seabed sediment sampling. Secondly, the hydrodynamic modelling analysis using Mike 21 FMHD and concrete block analysis, all these studies have been completed in August 2018. In the morphological behaviour analysis, three alternative routes are considered for the subsea HDPE pipes from Tidore Island to Maitara Island. The outcome of the analysis shows that the second track line option has the smallest impact by the hydrodynamic conditions, with a current speed of less than 0,5m/sec and a significant wave height of fewer than 1.2 meters. Furthermore, the uniformity of the lithology along the route is the other reason to select the second route. Finally, the concrete block analysis generated a minimum dimension of 75cm x 60cm x 30cm, and a free span of 3 meters is safe to absorb the uplift and drag forces acting on the pipe.

Keywords: Application design; HDPE pipe; Hydrodynamic analysis; Concrete block strategy

Article Metrics:

  1. Apandi, T. & Sudana, D. 1980. Geologic map of the Ternate quadrangle, North Maluku, Pusat Penelitian dan Pengembangan Geologi, Bandung, Badan Penelitian dan Pengembangan Energi dan Sumberdaya Mineral, Departemen Energi dan Suberdaya Mineral. Internal report, 1p
  2. Arias-Villamizar, C.A. & Vázquez-Morillas., A. 2018. Degradation of conventional and oxodegradable high density polyethylene in tropical aqueous and outdoor environments, Rev. Int. Contam Ambient., 34(1): 137-147. https://doi.org/10.20937/RICA
  3. ASTM D 2487-06. 2006. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM Internasional, United States. 12pp
  4. Atwater, J. F. & Lawrence, G. A. 2010. Power potential of a split tidal channel. Renew. Energ., 35:329-332. https://doi.org/10.1016/j.renene.2009.06.023
  5. Babah, I.A., Deida, M.F., Blake, G. & Froelich, D. 2012. Fresh water distribution problematic in Nouakchott. Proc. Eng., 33:321-329. https://doi.org/10.1016/j.proeng.2012.01.1210
  6. Babah, I.A., Froelich, D., Deida, M.F. & Blake, G. 2015. Evolution of the fresh water distribution in Nouakchott after the commissioning of the Aftout Es Saheli project. Desalinat. Water Treat., 57(13): 5932-5945. https://doi.org/10.1080/19443994.2015.1049957
  7. Badan Pusat Statistik BPS. 2020. Kota Tidore Kepulauan Dalam Angka (Tidore Kepulauan Municipality in Figures 2020). Badan Pusat Statistik Kota Tidore Kepulauan, 165p
  8. Badan Pusat Statistik BPS. 2019. Kecamatan Tidore Utara Dalam Angka 2019. Badan Pusat Statistik Kota Tidore Kepulauan, 77p
  9. Carneiro, D., Powell, S., Timmins, D. & Bruzzo, P. 2013. Reassessment of Dynamically Stable Pipelines Accounting for Potential Clashing With New Assets. In ASME 32nd Int. Conf. Ocean, Offshore Arctic Eng. OMAE2013-10604. p:1-9. https://doi.org/10.1115/OMAE2013-10604
  10. Cheng, L., An, H., Draper, S. & White, D. 2016. Effect of wave boundary layer on hydrodynamic forces on small diameter pipelines. Ocean Eng., 125:26-30. https://doi.org/10.1016/j.oceaneng.2016.07.016
  11. Da Costa, J.P., Nunes., A.R., Santos, P.S.M., Girão, A.V., Duarte, A.C. & Rocha-Santos, T. 2018. Degradation of polyethylene microplastics in seawater: Insights into the environmental degradation of polymers. J. Environ. Sci. Health, A, 53(9): 866-875. https://doi.org/10.1080/10934529.2018.1455381
  12. Danish Hydraulic Institute [DHI]. 2012A. MIKE 21 Flow Model FM Hydrodynamic Module Scientific Documentation. DHI. 58p
  13. Danish Hydraulic Institute [DHI]. 2012B. MIKE 21 Spectral Waves FM Spectral Wave Module Scientific Documentation, DHI. 66p
  14. de Kok, J.M. 2002. The influence of fresh water distribution on SPM transport in the Dutch coastal zone. Fine Sedimen. Dyn. Mar. Environ., 58:563-576. https://doi.org/10.1016/S1568-2692(02)80040-7
  15. DNV. 2017. DNV RP F105 Free Spanning Pipelines. Det Norske Veritas, 138p
  16. DNV. 2013. DNV OS F101 Submarine Pipeline Systems. Det Norske Veritas, 240p
  17. DNV. 1993. DNV 1981 Rules for Submarine Pipelines. Det Norske Veritas, 153p
  18. DNV. 1988. RP F305 On-bottom Stability Design of Submarine Pipelines. Det Norske Veritas, 41p
  19. Foda, M.A. 1985. Pipeline breakout from seafloor under wave action. App. Ocean Res., 7(2): 79-84. https://doi.org/10.1016/0141-1187(85)90037-9
  20. Foda, M. A., Chang, J. Y. H. & Law, A. W. K. 1990. Wave-induced break-out of half-buried marine pipes. J. Waterw. Port Coast. Ocean Eng., 116(2): 267-286. https://doi.org/10.1061/(ASCE)0733-950X(1990)116:2(267)
  21. Hale, J.R., Lammert, W.F. & Jacobsen, V. 1989. Improved basis for static stability analysis and design of marine pipelines. Proc. 22nd Offshore Technol. Conf. p: 171-180. https://doi.org/10.4043/6059-MS
  22. Hunt, E. M., Earl, P., Baraky, M., Kelly, T., Allen, B. 2017. MIC resistant HDPE lining for seawater applications, Corrosion, National Association of Corrosion Engineers (NACE International), 9776: 26-30
  23. Mu, S., He, Y., He, Z., & Su, B. 2015. Response of Fresh Water Distributions on Abrupt Changes of Topography in the Pearl River Networks of China, MATEC Web of Conferences. EDP Sciences. 25: 7p. https://doi.org/10.1051/matecconf/20152501004
  24. Novico, F., Astawa, I. N., Sinaga, A., & Ali, A. 2015. Seafloor Morphology Influence on Current Condition in a Sunda Strait Bridge Project Using Numerical Model. Bull. Mar. Geol., 30(2): 55-66. https://doi.org/10.32693/bomg.30.2.2015.75
  25. Padman, L. 2005. Tide Model Driver (TMD) Manual. Arctic. 1-13pp
  26. Ross, D.A. 1995. Introduction to Oceanography. New York, NY: HarperCollins. pp. 236¬242
  27. Sujarwanto. 2019. The Development of port in the Island Group Region: Case Study on Port of Rum in Tidore. J. Penelitian Transportasi Laut. 21: 51-60 https://doi.org/10.25104/transla.v21i2.1280
  28. Sumich, J.L. 1996. An Introduction to the Biology of Marine Life, sixth edition. Dubuque, IA: Wm. C. Brown. pp. 30-35
  29. Thurman, H.V. 1994. Introductory Oceanography, seventh edition. New York, NY: Macmillan. pp. 252-276
  30. Trechet, A.H. 2004. Morrison's Equation. Hydrodynamics for Ocean Engineers, 9pp
  31. United States Army Corps of Engineers [USACE]. 2002. Coastal Engineering Manual. Engineer Manual 1110-2-1100, United States Army Corps of Engineers, Washington, D.C
  32. Wu, H., Wang, X., Wang, B., Bai, Y. & Wang, P., 2017. Evaluation of tidal stream energy and its impact on surrounding dynamics in the Eastern Region of Pingtan Island, China. Chin. J. Oceanol. Limnol., 35:1319-1328 https://doi.org/10.1007/s00343-017-0187-z

Last update: 2021-04-18 11:17:23

No citation recorded.

Last update: 2021-04-18 11:17:23

No citation recorded.