Biomarkers in rock oysters (Saccostrea mordax) in response to organophosphate pesticides

Kennedy Opiyo  -  Curtin University, Australia
Christopher Rawson orcid scopus  -  Curtin University, Australia
Marthe Monique Gagnon orcid  -  Curtin University, Australia
*Ishaaq Saputra orcid scopus  -  Ministry of Marine Affairs and Fisheries, Indonesia
Received: 3 Jan 2021; Revised: 26 Jan 2021; Accepted: 27 Jan 2021; Published: 7 Mar 2021; Available online: 7 Mar 2021.
Open Access License URL: http://creativecommons.org/licenses/by-nc-sa/4.0

Citation Format:
Abstract

Chlorpyrifos is a xenobiotics contaminants that threats the marine environment and the living organism within the habitat. Although several marine bivalve species have been used as the indicator of marine pollution, the used of Saccostrea mordax is remaining unknown. This study aimed at investigating the suitability of lysosome membrane integrity, carboxylesterase activity, 8-oxo-2′-deoxyguanosine and condition index as biomarkers in adult S. mordax following their exposure to 0.0, 5.0 and 500 μg.L-1 of Chlorpyrifos for 21 days under laboratory conditions. Results indicated that the lysosome membrane integrity showed a dose-dependent response with a significant statistical number of destabilized cells between all the treatment groups. Carboxylesterase activity was significantly inhibited in 500 μg.L-1 chlorpyrifos treated group, while the environmentally relevant concentration (5 μg.L-1) did not induce a significant inhibition with reference to the control. Similarly, the condition index showed a dose-dependent response with the oysters exposed to 500 μg.L-1 chlorpyrifos exhibiting a significantly reduced growth rate. There was no statistical significance in the means of both 8-oxo-2′-deoxyguanosine in all treatment groups. The reaction of S. mordax to chlorpyrifos contamination demonstrates that the species can potentially be used as sentinel organisms in environmental monitoring programs. Lysosome membrane integrity was a single out as a sensitive biomarker for exposure to chlorpyrifos and is therefore suitable for environmental monitoring for sublethal concentrations of chlorpyrifos contaminations. Additionally, the use of multiple biomarkers was found to be robust in this study and can be extrapolated to other ecotoxicological studies


Keywords: biomarkers; chlorpyrifos; oyster; S. mordax; pesticides

Article Metrics:

  1. Ali, D., Nagpure, N. S., Kumar, S., Kumar, R., Kushwaha, B. & Lakra, W. S. 2009. Assessment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food Chem Toxicol, 47(3): 650-656. https://doi.org/10.1016/j.fct.2008.12.021
  2. Bailey, H. C., Miller, J. L., Miller, M. J., Wiborg, L. C., Deanovic, L. & Shed, T. 1997. Joint acute toxicity of diazinon and chlorpyrifos to Ceriodaphnia dubia. Environ. Toxicol. Chem., 16(11): 2304-2308. https://doi.org/10.1002/etc.5620161115
  3. Baker, J., Long, S., Hassell, K., Pettigrove, V. & Gagnon, M. 2016. Health Status of Sand Flathead (Platycephalus bassensis), Inhabiting an Industrialised and Urbanised Embayment, Port Phillip Bay, Victoria as Measured by Biomarkers of Exposure and Effects. PLoS One, 11(10):p.e0164257. https://doi.org/10.1371/journal.pone.0164257
  4. Benali, I., Boutiba, Z., Merabet, A. & Chèvre, N. 2015. Integrated use of biomarkers and condition indices in mussels (Mytilus galloprovincialis) for monitoring pollution and development of biomarker index to assess the potential toxic of coastal sites. Mar. Pollut. Bull., 95(1): 385-394. https://doi.org/10.1016/j.marpolbul.2015.03.041
  5. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Cacciatore, L.C., Nemirovsky, S.I., Verrengia Guerrero, N.R. & Cochón, A.C. 2015. Azinphos-methyl and chlorpyrifos, alone or in a binary mixture, produce oxidative stress and lipid peroxidation in the freshwater gastropod Planorbarius corneus. Aquat. Toxicol., 167:12-19. https://doi.org/10.1016/j.aquatox.2015.07.009
  7. Canesi, L., Negri, A., Barmo, C., Banni, M., Gallo, G., Viarengo, A. & Dondero, F. 2011. The Organophosphate Chlorpyrifos Interferes with the Responses to 17β-Estradiol in the Digestive Gland of the Marine Mussel Mytilus galloprovincialis. PLoS ONE, 6(5):e19803. https://doi.org/10.1371/journal.pone.0019803
  8. Chauhan, L.K.S., Varshney, M., Pandey, V., Sharma, P., Verma, V.K., Kumar, P. & Goel, S.K. 2016. ROS-dependent genotoxicity, cell cycle perturbations and apoptosis in mouse bone marrow cells exposed to formulated mixture of cypermethrin and chlorpyrifos. Mutagenesis, 31(6): 635-642. https://doi.org/10.1093/mutage/gew031
  9. Cho, S.M. & Jeong, W.G. 2005. Spawning impact on lysosomal stability of the Pacific Oyster, Crassostrea gigas. Aquaculture, 244(1-4): 383-387. https://doi.org/10.1016/j.aquaculture.2004.12.013
  10. Domouhtsidou, G.P., Dailianis, S., Kaloyianni, M. & Dimitriadis, V.K. 2004. Lysosomal membrane stability and metallothionein content in Mytilus galloprovincialis (L.), as biomarkers: Combination with trace metal concentrations. Mar. Pollut. Bull., 48(5-6): 572-586. https://doi.org/10.1016/j.marpolbul.2004.01.013
  11. Eaton, D.L., Daroff, R.B., Autrup, H., Bridges, J., Buffler, P., Costa, L.G., Coyle, J., McKhann, G., Mobley, W.C., Nadel, L., Neubert, D., Schulte-Hermann, R. & Spencer, P.S. 2008. Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Critical Rev. Toxicol., 38(S2): 1-125, https://doi.org/10.1080/10408440802272158
  12. Edge, K.J., Johnston, E.L., Roach, A.C. & Ringwood, A.H. 2012. Indicators of environmental stress: cellular biomarkers and reproductive responses in the Sydney rock oyster (Saccostrea glomerata). Ecotoxicology, 21(5):1415-1425. https://doi.org/10.1007/s10646-012-0895-2
  13. Filgueira, R., Comeau, L., Landry, T., Grant, J., Guyondet, T. & Mallet, A. 2013. Bivalve condition index as an indicator of aquaculture intensity: A meta-analysis. Ecol. Indicat., 25: 215-229. https://doi.org/10.1016/j.ecolind.2012.10.001
  14. Gagnon, M.M. & Rawson, C.A. 2016. Integrating Multiple Biomarkers of Fish Health: A Case Study of Fish Health in Ports. Arch. Environ. Contam. Toxicol., 70(2): 192-203. https://doi.org/10.1007/s00244-015-0258-0
  15. Gilliom, R.J., Barbash, J.E., Crawford, C.G., Hamilton, P.A., Martin, J.D., Nakagaki, N., Nowell, L.H., Scott, J.C., Stackelberg, P.E., Thelin, G.P. & Wolock, D.M. 2006. The quality of our Nation's waters pesticides in the Nation's streams and ground water, 1992-2001. Reston, VA: Reston, VA, United States: U. S. Geological Survey. https://doi.org/10.3133/cir1291
  16. Ha Park, K., Kim, Y.S., Chung, E.Y., Choe, S.N. & Choo, J.J. 2004. Cardiac responses of Pacific oyster Crassostrea gigas to agents modulating cholinergic function. Comp. Biochem. Phys. C, 139(4): 303-308. https://doi.org/10.1016/j.cca.2004.12.009
  17. Lappharat, S., Siriwong, W., Taneepanichskul, N., Borjan, M., Maldonado Perez, H. & Robson, M. 2014. Health risk assessment related to dermal exposure of chlorpyrifos: a case study of rice growing farmers in Nakhon Nayok Province, Central Thailand. J. Agromed., 19(3): 294-302. https://doi.org/10.1080/1059924X.2014.916643
  18. Liu, Y., Pan, X. & Li, J. 2015. A 1961-2010 record of fertilizer use, pesticide application and cereal yields: a review. Agron. Sustain. Dev., 35(1): 83-93. https://doi.org/10.1007/s13593-014-0259-9
  19. Lucas, A. & Beninger, P.G. 1985. The use of physiological condition indices in marine bivalve aquaculture. Aquaculture, 44(3): 187-200. https://doi.org/10.1016/0044-8486(85)90243-1
  20. Lushchak, V.I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol, 101(1): 13-30. https://doi.org/10.1016/j.aquatox.2010.10.006
  21. Martinez, R.S., Di Marzio, W.D. & Sáenz, M.E. 2015. Genotoxic effects of commercial formulations of Chlorpyrifos and Tebuconazole on green algae. Ecotoxicology, 24(1): 45-54. https://doi.org/10.1007/s10646-014-1353-0
  22. Moore, M.N., Icarus-Allen, J. & McVeigh, A. 2006. Environmental prognostics: An integrated model supporting lysosomal stress responses as predictive biomarkers of animal health status. Mar. Environ. Res., 61(3): 278-304. https://doi.org/10.1016/j.marenvres.2005.10.005
  23. Moreira, F.T., Browne, M.A. & Coleman, R.A. 2013. Effect of extraction-method, period of incubation and tidal emersion on the viability of haemocytes from oysters. Mar. Pollut. Bull., 74(1): 208-212. https://doi.org/10.1016/j.marpolbul.2013.06.056
  24. Oliveira, M., Maria, V.L., Ahmad, I., Teles, M., Serafim, A., Bebianno, M.J., Pacheco, M. & Santos, M.A. 2010. Golden grey mullet and sea bass oxidative DNA damage and clastogenic/aneugenic responses in a contaminated coastal lagoon. Ecotoxicol. Environ. Saf., 73(8): 1907-1913. https://doi.org/10.1016/j.ecoenv.2010.07.003
  25. Osteen, C.D. & Fernandez‐Cornejo, J. 2013. Economic and policy issues of U.S. agricultural pesticide use trends. Pest. Manage. Sci., 69(9):1001-1025. https://doi.org/10.1002/ps.3529
  26. Otieno, P O., Schramm, K.W., Pfister, G., Lalah, J.O., Ojwach, S.O. & Virani, M. 2012. Spatial Distribution and Temporal Trend in Concentration of Carbofuran, Diazinon and Chlorpyrifos Ethyl Residues in Sediment and Water in Lake Naivasha, Kenya. Bull. Environ. Contam. Toxicol., 88(4): 526-532. https://doi.org/10.1007/s00128-012-0529-7
  27. Patetsini, E., Dimitriadis, V.K. & Kaloyianni, M. 2013. Biomarkers in marine mussels,Mytilus galloprovincialis, exposed to environmentally relevant levels of the pesticides, chlorpyrifos and penoxsulam. Aquat. Toxicol., 126: 338-345. https://doi.org/10.1016/j.aquatox.2012.09.009
  28. QIAGEN. 2006. DNeasy Blood & Tissue Handbook. Retrieved from https://www.qiagen.com/au/ resources/resourcedetail?id=6b09dfb8-6319-464d-996c-79e8c7045a50〈=en
  29. Relyea, R. & Hoverman, J. 2006. Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecol. Lett., 9: 1157-1171. https://doi.org/10.1111/j.1461-0248.2006.00966.x
  30. Ringwood, A.H., Conners, D.E., Hoguet, J. & Ringwood, L.A. 2005. Techniques in Aquatic Toxicology, Chapter : Lysosomal destabilization assays for estuarine organisms, Volume 2. 767pages. Taylor & Francis CRC Press Book. https://doi.org/10.1201/9780203501597.ch16
  31. Rivadeneira, P.R., Agrelo, M., Otero, S. & Kristoff, G. 2013. Different effects of subchronic exposure to low concentrations of the organophosphate insecticide chlorpyrifos in a freshwater gastropod. Ecotoxicol. Environ. Saf., 90: 82-88. https://doi.org/10.1016/j.ecoenv.2012.12.013
  32. Rosen, J.E. 1997. Proposed mechanism for the photodynamic generation of 8-oxo-7,8-dihydro-2′-deoxyguanosine produced in cultured cells by exposure to lomefloxacin. Mutat. Res., 381(1): 117-129. https://doi.org/10.1016/S0027-5107(97)00159-0
  33. Sarkar, A., Ray, D., Shrivastava, A.N. & Sarker, S. 2006. Molecular Biomarkers: Their significance and application in marine pollution monitoring. Ecotoxicol., 15(4): 333-340. https://doi.org/10.1007/s10646-006-0069-1
  34. Smith, P.T. & Reddy, N. 2012. Application of magnetic resonance imaging (MRI) to study the anatomy and reproductive condition of live Sydney rock oyster, Saccostrea glomerata (Gould). Aquaculture, 334: 191-198. https://doi.org/10.1016/j.aquaculture.2011.12.033
  35. Tedoldi, D., Chebbo, G., Pierlot, D., Kovacs, Y. & Gromaire, M.C. 2016. Impact of runoff infiltration on contaminant accumulation and transport in the soil/filter media of Sustainable Urban Drainage Systems: A literature review. Sci. Total Environ., 569-570: 904-926. https://doi.org/10.1016/j.scitotenv.2016.04.215
  36. Trevigen. 2015. HT 8-oxo-dG ELISA Kit II. Retrieved from http://www.trevigen.com/product/5/24/ 0/8oxodG_ELISA _Kit__Antibodies/
  37. Volety, A. 2008. Effects of salinity, heavy metals and pesticides on health and physiology of oysters in the Caloosahatchee Estuary, Florida. Ecotoxicology, 17(7): 579-590. https://doi.org/10.1007/s10646-008-0242-9
  38. Wang, J., Wang, J., Zhu, L., Xie, H., Shao, B. & Hou, X. 2014. The enzyme toxicity and genotoxicity of chlorpyrifos and its toxic metabolite TCP to zebrafish Danio rerio. Ecotoxicology, 23(10): 1858-1869. https://doi.org/10.1007/s10646-014-1321-8
  39. Webb, D. 2011. Freshwater shrimp (Palaemonetes australis ) as a potential bioindicator of crustacean health. Environ. Mon. Assess., 178(1): 537-544. https://doi.org/10.1007/s10661-010-1711-1
  40. Wheelock, C.E., Eder, K.J., Werner, I., Huang, H., Jones, P.D., Brammell, B.F., Elskus, A.A. & Hammock, B.D. 2005. Individual variability in esterase activity and CYP1A levels in Chinook salmon (Oncorhynchus tshawytscha) exposed to esfenvalerate and chlorpyrifos. Aquat. Toxicol., 74(2): 172-192. https://doi.org/10.1016/j.aquatox.2005.05.009

Last update: 2021-04-16 19:28:46

No citation recorded.

Last update: 2021-04-16 19:28:46

No citation recorded.