skip to main content

Performance Evaluation of Various Phase Change Materials for Thermal Energy Storage of A Solar Cooker via Numerical Simulation

Telkom University, Indonesia

Published: 4 Nov 2016.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2016 International Journal of Renewable Energy Development

Citation Format:
Abstract

In this paper, thermal performance of various phase change materials (PCMs) used as thermal energy storage in a solar cooker has been investigated numerically. Heat conduction equations in cylindrical domain are used to model heat transfer of the PCMs. Mathematical model of phase change problem in the PCM storage encompasses heat conduction equations in solid and liquid region separated by moving solid-liquid interface. The phase change problem is solved by reformulating heat conduction equations with emergence of moving boundary into an enthalpy equation. Numerical solution of the enthalpy equation is obtained by implementing Godunov method and verified by analytical solution of one-dimensional case. Stability condition of the numerical scheme is also discussed. Thermal performance of various PCMs is evaluated via the stored energy and temperature history. The simulation results show that phase change material with the best thermal performance during the first 2.5 hours of energy extraction is shown by erythritol. Moreover, magnesium chloride hexahydrate can maintain temperature of the PCM storage in the range of 110-116.7°C for more than 4 hours while magnesium nitrate hexahydrate is effective only for one hour with the PCM storage temperature around 121-128°C. Among the PCMs that have been tested, it is only erythritol that can cook 10 kg of the loaded water until it reaches 100°C for about 3.5 hours.

Article History: Received June 22nd 2016; Received in revised form August 26th 2016; Accepted Sept 1st 2016; Available online

How to Cite This Article: Tarwidi, D., Murdiansyah, D.T, Ginanja, N. (2016) Performance Evaluation of Various Phase Change Materials for Thermal Energy Storage of A Solar Cooker via Numerical Simulation. Int. Journal of Renewable Energy Development, 5(3), 199-210.

http://dx.doi.org/10.14710/ijred.5.3.199-210

Fulltext View|Download
Keywords: PCM; thermal performance; heat transfer; solar cooker; Godunov method; numerical simulation

Article Metrics:

  1. Alexiades, V. & Solomon, A.D. (1981) Mathematical Modeling of Melting and Freezing Processes. Hemisphere Publishing Corporation, Washington DC
  2. Agyenim, F., Hewitt, N., Eames, P., & Smyth, M. (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews, 14(2), 615–628
  3. Buddhi, D. & Sahoo, L.K. (1997) Solar cooker with latent storage: Design and experimental testing. Energy Conservation and Management, 38(5), 493–498
  4. Buddhi, D., Sharma, S.D., & Sharma, A. (2003) Thermal performance evaluation of a latent heat storage unit for late evening cooking in a solar cooker having three reflectors. Energy Conservation and Management, 44(6), 809–817
  5. Chen, C.R., Sharma, A., Tyagi, S.K., & Buddhi, D. (2008) Numerical heat transfer studies of PCMs used in a box-type solar cooker. Renewable Energy, 33(5), 1121–1129
  6. Choi, J.C. & Kim, S.D. (1992) Heat-transfer characteristic of latent heat storage system using MgCl2·6H2O. Energy, 17(12), 1153–1164
  7. Costa, M., Buddhi, D., & Oliva, A. (1998) Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction. Energy Conservation and Management, 39(3), 319–330
  8. Domanski, R., El-Sebaii, A.A., & Jaworski, M. (1995) Cooking during off-sunshine hours using PCMs as storage media. Energy, 20(7), 607–616
  9. Esen, M. & Ayhan, T. (1996) Development of model compatible with solar assisted cylindrical energy storage tank ans variation of stored energy with time for different phase change materials. Energy Conversion and Management, 37(12), 1775–1785
  10. Esen, A. & Kutluay, S. (2004) A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method. Applied Mathematics and Computation, 148(2), 321–329
  11. Gong, Z., & Mujumdar, A.S. (1997) Finite-element analysis of cycle heat transfer in a shell-and-tube latent heat energy storage exchanger. Applied Thermal Engineering, 17(6), 583–591
  12. Handayani, N.A. & Ariyanti, D. (2012) Potency of solar energy applications in Indonesia. International Journal of Renewable Energy Development, 1(2), 33–38
  13. Kanimozhi, B., Sanandharya, K., Anand, S., & Kumar, S. (2015) Experimental study on solar cooker using phase change materials. Applied Mechanics and Materials, 766-767, 463–467
  14. Khalifa, A.M.A., Taha, M.M.A., & Akyurt, M. (1987) Design, simulation, and testing of a new concentrating type solar cooker. Solar Energy, 38(2), 79–88
  15. Muthusivagami, R.M., Velraj, R., & Sethumadhavan, R. (2010) Solar cookers with and without thermal storage--A review. Renewable and Sustainable Energy Reviews, 14(2), 691–701
  16. Najemi, S.D. & Boroushaki, M. (2016) Design, analysis and optimization of a solar dish/stirling system. International Journal of Renewable Energy Development, 5(1), 33–42
  17. Peng, D. & Chen, Z. (2009) Numerical simulation of phase change heat transfer of a solar flat-plate collector with energy storage. Building Simulation, 2(4), 273–280
  18. Ravishankar, S., Nagarajan, P.K., Vijayakumar, D., & Jawahar, M.K. (2013) Phase material on augmentation of fresh water production using pyramid solar still. International Journal of Renewable Energy Development, 2(3), 115–120
  19. Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D. (2009) Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345
  20. Sharma, S.D., Buddhi, D., Sawhney, R.L., & Sharma, A. (2000) Design development and performance evaluation of a latent heat unit for evening cooking in a solar cooker. Energy Conservation Management, 41(14), 1497–1508
  21. Sharma, S.D., Iwata, T., Kitano, H., & Sagara, K. (2005) Thermal performance of solar cooker base on an evacuated tube solar collector with a PCM storage unit. Solar Energy, 78(3), 416–426
  22. Singh, H., Saini, K., & Yadav, A. (2015) Experimental comparison of different heat transfer fluid for thermal performance of a solar cooker based on evacuated tube collector. Environment, Development and Sustainability, 17(3), 497–511
  23. Tarwidi, D., & Pudjaprasetya, S. R. (2013). Godunov method for Stefan problems with enthalpy formulations. East Asian Journal on Applied Mathematics, 3(02), 107–119
  24. Tarwidi, D. (2015). Modeling and numerical simulation of solar cooker with PCM as thermal energy storage. In Information and Communication Technology (ICoICT), 2015 3rd International Conference on (pp. 584-589). IEEE
  25. Voller, V.R. & Cross, M. (1981) Accurate solutions of moving boundary
  26. problems using the enthalpy method. International Journal of Heat and Mass Transfer, 24(3), 545–556
  27. Voller, V.R. & Shadabi, L. (1984) Enthalpy methods for tracking a phase change boundary in two dimensions. International Communications in Heat and Mass Transfer, 11(3), 239–249

Last update:

  1. The Potential of Steam Generating by The PMMA Fresnel Lens Concentrator for Indoor Solar Cooker Application

    Asrori Asrori. SSRN Electronic Journal, 2024. doi: 10.2139/ssrn.4857739
  2. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios

    Amal Herez, Mohamad Ramadan, Mahmoud Khaled. Renewable and Sustainable Energy Reviews, 81 , 2018. doi: 10.1016/j.rser.2017.08.021
  3. Box type solar cooker with thermal storage: an overview

    Ajay Vishwakarma, Sunanda Sinha. Energy Systems, 15 (3), 2024. doi: 10.1007/s12667-022-00512-9
  4. Advances in Renewable Energies and Power Technologies

    Antonio Lecuona-Neumann, José I. Nogueira, Mathieu Legrand. 2018. doi: 10.1016/B978-0-12-812959-3.00013-7
  5. Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems

    Selvaraj Balachandran, Jose Swaminathan. Energies, 15 (22), 2022. doi: 10.3390/en15228775
  6. Numerical simulation of PV cooling by using single turn pulsating heat pipe

    Hossein Alizadeh, Roghayeh Ghasempour, Mohammad Behshad Shafii, Mohammad Hossein Ahmadi, Wei-Mon Yan, Mohammad Alhuyi Nazari. International Journal of Heat and Mass Transfer, 127 , 2018. doi: 10.1016/j.ijheatmasstransfer.2018.06.108
  7. Improving solar cooker performance using phase change materials: A comprehensive review

    Adil A.M. Omara, Abuelnuor A.A. Abuelnuor, Hussein A. Mohammed, Daryoush Habibi, Obai Younis. Solar Energy, 207 , 2020. doi: 10.1016/j.solener.2020.07.015
  8. Study of the thermal storage system with solar cooker

    Vanraj Dodiya, Chetankumar Patel, Bharat Ramani. INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING, AND TECHNOLOGY 2022: Conference Proceedings, 2963 , 2023. doi: 10.1063/5.0183027
  9. Thermal energy storage using phase change material for solar thermal technologies: A sustainable and efficient approach

    Pushpendra Kumar Singh Rathore, Basant Singh Sikarwar. Solar Energy Materials and Solar Cells, 277 , 2024. doi: 10.1016/j.solmat.2024.113134
  10. On the integration of phase change materials with evacuated tube solar thermal collectors

    M. Aramesh, B. Shabani. Renewable and Sustainable Energy Reviews, 132 , 2020. doi: 10.1016/j.rser.2020.110135
  11. Box-Type Solar Cookers: An Overview of Technological Advancement, Energy, Environmental, and Economic Benefits

    Navendu Misra, Abhishek Anand, Saurabh Pandey, Karunesh Kant, Amritanshu Shukla, Atul Sharma. Energies, 16 (4), 2023. doi: 10.3390/en16041697
  12. Passive Cooling of PV Modules Using Heat Pipe Thermosiphon with Acetone: Experimental and Theoretical Study

    Zakariya Kaneesamkandi, Mohammed Jarallah Almalki, Abdul Sayeed, Zeyad A. Haidar. Applied Sciences, 13 (3), 2023. doi: 10.3390/app13031457
  13. Application of nanofluids in thermosyphons: A review

    Mahdi Ramezanizadeh, Mohammad Alhuyi Nazari, Mohammad Hossein Ahmadi, Emin Açıkkalp. Journal of Molecular Liquids, 272 , 2018. doi: 10.1016/j.molliq.2018.09.101

Last update: 2024-10-08 16:15:22

  1. Solar cooking for all

    Lecuona-Neumann A.. Sustainable Energy Technologies, 2017. doi: 10.1201/9781315269979
  2. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios

    Amal Herez, Mohamad Ramadan, Mahmoud Khaled. Renewable and Sustainable Energy Reviews, 81 , 2018. doi: 10.1016/j.rser.2017.08.021
  3. Photovoltaic Cooking

    Lecuona-Neumann A.. Advances in Renewable Energies and Power Technologies, 1 , 2018. doi: 10.1016/B978-0-12-812959-3.00013-7
  4. Multi-criteria decision making (MCDM) approach for selecting solar plants site and technology: A review

    Ghasempour R.. International Journal of Renewable Energy Development, 8 (1), 2019. doi: 10.14710/ijred.8.1.15-25
  5. Numerical simulation of PV cooling by using single turn pulsating heat pipe

    Hossein Alizadeh, Roghayeh Ghasempour, Mohammad Behshad Shafii, Mohammad Hossein Ahmadi, Wei-Mon Yan, Mohammad Alhuyi Nazari. International Journal of Heat and Mass Transfer, 127 , 2018. doi: 10.1016/j.ijheatmasstransfer.2018.06.108
  6. Improving solar cooker performance using phase change materials: A comprehensive review

    Adil A.M. Omara, Abuelnuor A.A. Abuelnuor, Hussein A. Mohammed, Daryoush Habibi, Obai Younis. Solar Energy, 207 , 2020. doi: 10.1016/j.solener.2020.07.015
  7. On the integration of phase change materials with evacuated tube solar thermal collectors

    M. Aramesh, B. Shabani. Renewable and Sustainable Energy Reviews, 132 , 2020. doi: 10.1016/j.rser.2020.110135
  8. Application of nanofluids in thermosyphons: A review

    Mahdi Ramezanizadeh, Mohammad Alhuyi Nazari, Mohammad Hossein Ahmadi, Emin Açıkkalp. Journal of Molecular Liquids, 272 , 2018. doi: 10.1016/j.molliq.2018.09.101