Modeling and PSO optimization of Humidifier-Dehumidifier desalination

*Mohammad Hossein Ahmadi  -  Shahrood University of Technology, Iran, Islamic Republic of
Mohammad Ali Afshar  -  Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran, Iran, Islamic Republic of
Ali Naseri  -  Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran, Iran, Islamic Republic of
Mokhtar Bidi  -  Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran, Iran, Islamic Republic of
H. Hadiyanto  -  Departement of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, SH-Tembalang, Semarang, 50275, Indonesia, Indonesia
Published: 18 Feb 2018.
Open Access Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The aim of this study is modeling a solar-air heater humidification-dehumidification unit with applying particle swarm optimization to find out  the maximum gained output ratio with respect to the mass flow rate of water and air entering humidifier, mass flow rate of cooling water entering dehumidifier, width and length of solar air heater and terminal temperature difference (TTD) of dehumidifier representing temperature difference of inlet cooling water and saturated air to dehumidifier as its decision variable. A sensitivity analysis, furthermore, is performed to distinguish the effect of operating parameters including mass flow rate and streams’ temperature. The results showed that the optimum productivity decreases by decreasing the ratio of mass flow rate of water entering humidifier to air ones.

Article History: Received: July 12th 2017; Revised: December 15th 2017; Accepted: 2nd February 2018; Available online

How to Cite This Article: Afshar, M.A., Naseri, A., Bidi, M., Ahmadi, M.H. and Hadiyanto, H. (2018) Modeling and PSO Optimization of Humidifier-Dehumidifier Desalination. International Journal of Renewable Energy Development, 7(1),59-64.

https://doi.org/10.14710/ijred.7.1.59-64

Keywords: humidification-dehumidification desalination, GOR, solar air collector, PSO

Article Metrics:

  1. Mistry, K. H., Mitsos, A., & Lienhard, J. H. (2011). Optimal operating conditions and configurations for humidification–dehumidification desalination cycles. International Journal of Thermal Sciences, 50(5), 779-789
  2. Mehrgoo, M., & Amidpour, M. (2011). Derivation of optimal geometry of a multi-effect humidification–dehumidification desalination unit: A constructal design. Desalination, 281, 234-242
  3. Mehrgoo, M., & Amidpour, M. (2011). Constructal design of humidification–dehumidification desalination unit architecture. Desalination, 271(1), 62-71
  4. Mehrgoo, M., & Amidpour, M. (2012). Constructal design and optimization of a direct contact humidification–dehumidification desalination unit. Desalination, 293, 69-77
  5. El-Aziz, K. M. A., Hamza, K., El Morsi, M., Nassef, A. O., Metwalli, S. M., & Saitou, K. (2014, August). Optimum Solar HDH Desalination for Semi-Isolated Communities Using HGP and GA’s. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. V02AT03A020-V02AT03A020). American Society of Mechanical Engineers
  6. González, R., Pieretti, P., & Díaz, H. (2009, January). Design Algorithm of a Multi-Effect Humidification–Dehumidification Solar Distillation System. In ASME 2009 International Mechanical Engineering Congress and Exposition (pp. 111-115). American Society of Mechanical Engineers
  7. Younis, M. A., Darwish, M. A., & Juwayhel, F. (1993). Experimental and theoretical study of a humidification-dehumidification desalting system. Desalination, 94(1), 11-24
  8. Chafik, E. (2003). A new seawater desalination process using solar energy. Desalination, 153(1-3), 25-37
  9. Yamalı, C., & Solmuş, İ. (2007). Theoretical investigation of a humidification-dehumidification desalination system configured by a double-pass flat plate solar air heater. Desalination, 205(1-3), 163-177
  10. Kalogirou, S. A. (2013). Solar energy engineering: processes and systems. Academic Press
  11. Naseri, A., Bidi, M., Ahmadi, M. H., & Saidur, R. (2017). Exergy analysis of a hydrogen and water production process by a solar-driven transcritical CO 2 power cycle with Stirling engine. Journal of Cleaner Production, 158, 165-181
  12. Naseri, A., Bidi, M., & Ahmadi, M. H. (2017). Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO 2 power cycle with liquefied natural gas heat sink. Renewable Energy
  13. Al-Sahali, M., & Ettouney, H. M. (2008). Humidification dehumidification desalination process: Design and performance evaluation. Chemical Engineering Journal, 143(1), 257-264
  14. Sun, Z., Wang, J., Dai, Y., & Wang, J. (2012). Exergy analysis and optimization of a hydrogen production process by a solar-liquefied natural gas hybrid driven transcritical CO 2 power cycle. international journal of hydrogen energy, 37(24), 18731-18739
  15. Soufari, S. M., Zamen, M., & Amidpour, M. (2009). Performance optimization of the humidification–dehumidification desalination process using mathematical programming. Desalination, 237(1-3), 305-317
  16. Zamen, M., Amidpour, M., & Soufari, S. M. (2009). Cost optimization of a solar humidification–dehumidification desalination unit using mathematical programming. Desalination, 239(1-3), 92-99

Last update: 2021-03-03 12:59:39

  1. Investigation of Capacitive Deionization; Performance Assessment Based on Operational Parameters and Single-Objective Optimization

    Hira Naveed, Shahrose Imran, Muhammad Wajid Saleem, Asad Ullah, Sajid Kamran. Arabian Journal for Science and Engineering, 2021. doi: 10.1007/s13369-021-05410-3
  2. Optimum arrangement of two-stage plug and concentrate recycling RO systems using thermodynamic and exergy analysis

    Abbas Naeimi, Mohammad Hossein Ahmadi, Milad Sadeghzadeh, Alibakhsh Kasaeian. International Journal of Numerical Methods for Heat & Fluid Flow, 30 (6), 2019. doi: 10.1108/HFF-12-2018-0766
  3. Exergoeconomic comparison and optimization of organic Rankine cycle, trilateral Rankine cycle and transcritical carbon dioxide cycle for heat recovery of low-temperature geothermal water

    Afsaneh Noroozian, Abbas Naeimi, Mokhtar Bidi, Mohammad Hossein Ahmadi. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 127 (8), 2019. doi: 10.1177/0957650919844647
  4. Optimal design of thermal performance of an orifice pulse tube refrigerator

    Debashis Panda, Manoj Kumar, Ashok K. Satapathy, Sunil K. Sarangi. Journal of Thermal Analysis and Calorimetry, 2020. doi: 10.1007/s10973-020-09265-y
  5. A review on application of nanofluid in various types of heat pipes

    Mohammad Alhuyi Nazari, Mohammad H. Ahmadi, Milad Sadeghzadeh, Mohammad Behshad Shafii, Marjan Goodarzi. Journal of Central South University, 26 (5), 2019. doi: 10.1007/s11771-019-4068-9

Last update: 2021-03-03 12:59:40

  1. Determination of thermal conductivity ratio of CuO/ethylene glycol nanofluid by connectionist approach

    Ahmadi M.A.. Journal of the Taiwan Institute of Chemical Engineers, 91 , 2018. doi: 10.1016/j.jtice.2018.06.003
  2. Investigation of Capacitive Deionization; Performance Assessment Based on Operational Parameters and Single-Objective Optimization

    Hira Naveed, Shahrose Imran, Muhammad Wajid Saleem, Asad Ullah, Sajid Kamran. Arabian Journal for Science and Engineering, 2021. doi: 10.1007/s13369-021-05410-3
  3. Optimum arrangement of two-stage plug and concentrate recycling RO systems using thermodynamic and exergy analysis

    Abbas Naeimi, Mohammad Hossein Ahmadi, Milad Sadeghzadeh, Alibakhsh Kasaeian. International Journal of Numerical Methods for Heat & Fluid Flow, 30 (6), 2019. doi: 10.1108/HFF-12-2018-0766
  4. Exergoeconomic comparison and optimization of organic Rankine cycle, trilateral Rankine cycle and transcritical carbon dioxide cycle for heat recovery of low-temperature geothermal water

    Afsaneh Noroozian, Abbas Naeimi, Mokhtar Bidi, Mohammad Hossein Ahmadi. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 127 (8), 2019. doi: 10.1177/0957650919844647
  5. Optimal design of thermal performance of an orifice pulse tube refrigerator

    Debashis Panda, Manoj Kumar, Ashok K. Satapathy, Sunil K. Sarangi. Journal of Thermal Analysis and Calorimetry, 2020. doi: 10.1007/s10973-020-09265-y
  6. A review on application of nanofluid in various types of heat pipes

    Mohammad Alhuyi Nazari, Mohammad H. Ahmadi, Milad Sadeghzadeh, Mohammad Behshad Shafii, Marjan Goodarzi. Journal of Central South University, 26 (5), 2019. doi: 10.1007/s11771-019-4068-9