- Abidin, Z., & Yesilata, B. (2004) New approaches on the optimization of directly coupled PV pumping systems, Solar Energy, 77 (1), 81‐93
- Akbaba, M. (2006) Optimum matching parameters of an MPPT unit based for a PVG-powered water pumping system for maximum power transfer, Int. J. Energy Res., 30, 395–409
- Al-Karaghouli, A., & Al-Sabounchi, A.M. (2000) A PV pumping system, Applied Energy,65, 145-151
- Appelbaum, J., & Bany, J. (1979) Performance analysis of D.C. motor‐photovoltaic converter system‐I, Solar Energy, 22 (5),439‐445
- Atlam, M.Y.O., & Kuyumcu, F. (2003) Application of genetic algorithms on a photovoltaic panel (PV)-pump motor matching to natural tracking of PV maximum power points, in Proc. Turkish Symp. Artificial Intelligence and Neural Networks, Canakkale, Turkey
- Ba, A., Aroudam, E., Chighali, O.E., Hamdoun, O., & Mohamed, M.L. (2018) Performance Optimisation of the PV pumping system, Procedia Manufacturing 22, 788-795
- Ba, A., Chighali, O.E., Mohamed El mamy, M.M., Hamdoun, O., & Aroudam, E. (2018) Comparative study of different DC/DC power converter for optimal PV system using MPPT (P&O) method, Applied Solar Energy, 54(4), 235-245
- Belgacem, B.G. (2012) Performance of submersible PV water pumping systems in Tunisia, Energy for Sustainable Development, 16, 415-420
- Calais, M., & Hinz, H. (1998) A ripple‐based maximum power point tracking algorithm for a single‐phase, grid‐connected photovoltaic system, Solar Energy, 63(5), 277‐282
- Chandel, S.S., Nagaraju, N.M., & Chandel, R. (2015) Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies, Renewable and Sustainable Energy Reviews, 49, 1084–1099
- Elgendy, M.A., Zahawi, B., & Atkinson, D. J. (2010) Comparison of Directly Connected and Constant Voltage Controlled Photovoltaic Pumping Systems, IEEE Transactions on Sustainable Energy, 1(3), 184‐192
- El-samahy, A.A., & Shamseldin, M.A. (2016) Brushless DC motor tracking control using self-tuning fuzzy PID control and model reference adaptive control, Ain Shams Engineering Journal 9(3), 341–352
- Fam, W. Z. & Balachander, M. K. (1988) Dynamic performance of a dc shunt motor connected to a photovoltaic array, IEEE Trans. Energy Convers., 3(3), 613–617
- Feraga, C.E., & Bouldjedri, A. (2016) Performance of a Photovoltaic Pumping System Driven by a Single Phase Induction Motor Connected to a Photovoltaic Generator, Automatika, 51, 163–172
- Gupta, M.K., & Jain, R. (2013) MPPT Simulation with DC Submersible Solar Pump using Output Sensing Direct Control Method and Cuk Converter, International Journal of Renewable Energy Research, 3 (1), 186-191
- Hadi, H., Tokuda, S., & Rahardjo, S. (2003) Evaluation of performance of photovoltaic system with maximum power point (MPP), Solar Energy Mater. Solar Cells, 75, 673–678
- Hadj Arab, A., Benghanem, M., & Chenlo, F. (2006) Motor-pump system modelization, Renewable Energy, 31,905–913
- Hamrouni, N., Jraidi, M. & Chérif, A., (2008) Solar radiation and ambient temperature effects on the performances of a PV pumping system, Revue des Energies Renouvelables, 11(1), 95–106
- Jain, A., Sarkar, P.R., & Siddique, M.K. (2015) Modeling and Performance Analysis of a Permanent Magnet Brushless DC motor using Instrumentation Technique, International Journal of Engineering Research and General Science, 3 (1), 814–820
- Kabade, A., Rajoriya, A., & Chaubey, U.C. (2013) Solar Pump Application in Rural Water Supply – A Case Study from Ethiopia, International of Energy Engineering, 3 (5), 176-182
- Kavitha, B., Karthikeyan, S., & Iswarya, B. (2004) Design of solar PV water pumping system using BLDC drive using sensorless method, The International Journal of Engineering and Science, 3 (3), 41-46
- Koner, P.K. (1995) Optimization techniques for a photovoltaic water pumping system, Renewable Energy, vol. 6, pp. 53–62
- Koutroulis, E., Kalaitzakis, K. & Voulgaris, N. (2001) Development of a Microcontroller-Based, Photovoltaic Maximum Power Point Tracking Control System, IEEE Transactions On Power Electronics, 16, 46–54
- Lawrance, B.W.W., & Langridge, D. (1995) Simulation and performance of a photovoltaic pumping system, in Proc. IEEE Int. Conf. Power Electronics and Drive Systems. 1,513–518
- Merino, G.G., Lagos, L.O., & Gontupil, J.E. (2008) Monitoring and evaluation of a direct coupled photovoltaic pumping system, Applied engineering in agriculture, 24 (3), 277-284
- Metwally H.M.B., & Anis, W.R. (1995) Performance analysis of photovoltaic pumping systems using switched reluctance motor drives, Progress in Photovoltaics, 3, 253–264
- Mustapha, T., Gauri, S., & Gürbüz, G. (2015) Mauritania Renewebles, Readiness and Assessement, International renewable Energy Agency, Abu Dhabi, United Arabe Emirates
- Rao, A.P.C., Obulesh, Y. P., & Babu, C.S. (2012) Mathematical modeling of BLDC motor with closed loop speed control using PID controller under various loading conditions, ARPN Journal of Engineering and Applied Sciences, 7, 1321-1328
- Roger, J.A. (1979) Theory of the direct coupling between D.C. motors and photovoltaic solar arrays, Solar Energy, 23 (3), 193‐198
- Suehrcke, H., Appelbaum, J., & Reshef, B. (1997) Modelling a permanent magnet DC motor/centrifugal pump assembly in a photovoltaic energy system, Solar Energy, 59, 37–42
- Surendra, T.S., & Subbaraman, S.V.V. (2002) Solar PV water pumping comes of age in India, in Proc. IEEE Photovoltaic Specialists Conf., pp. 1485–1488
- Taha, M.S. & Suresh, K. (1996) Maximum power point tracking inverter for photovoltaic source pumping applications, in Proc. IEEE Int. Conf. Power Electronics, Drives & Energy Systems for Industrial Growth, New Delhi, India, 2,883-886
- Vongmanee, V. (2004) The photovoltaic pumping system using a variable speed single phase induction motor drive controlled by field oriented principle, in Proc. IEEE Asia-Pacific Conf. Circuits and Systems, Tainan, Taiwan, 2, 1185–1188
- Whitfield, G.R., Bentley, R.W., & Burton, J. D. (1995) Increasing the cost effectiveness of small solar photovoltaic pumping systems, Renewable Energy, 6, 483–486
- Zegaoui, A., Aillerie, M., Petit, P., Sawicki, J.P., Jaafar, A., Salame, C., & Charles, J.P. (2011) Comparison of Two Common Maximum Power Point Trackers by Simulating of PV Generators, Energy Procedia 6, 678-687
- Zhang, Z. (2018) Influence of Special Weather on Output of PV System, IOP Conf. Series: Earth and Environmental Science, 108, 052063
Last update:
-
IoT Monitoring Scheme in Solar-based Motor Drive for Water Pump Applications
E. Malarvizhi, G. Elavel Visuvanathan, M. Tholkapiyan, S. Parthasarathy.
2023 2nd International Conference on Edge Computing and Applications (ICECAA),
2023.
doi: 10.1109/ICECAA58104.2023.10212379
-
Optimization of a Standalone PV System with a New Proposed MPPT Method
Abdellahi Ba, Chighali Ehssein, Assia Benkaddour, Aroudam El Hassan.
2020 11th International Renewable Energy Congress (IREC),
2020.
doi: 10.1109/IREC48820.2020.9310390
-
Induction Motor Speed Control with Solar Cell Using MPPT Algorithm by Incremental Conductance Method
Omer N Mahmmoud, Khalaf S Gaeid, Assad F Nashi, Khadim Moin Siddiqui.
Tikrit Journal of Engineering Sciences,
27 (3),
2020.
doi: 10.25130/tjes.27.3.02
Last update: 2025-04-05 17:08:00
-
Optimization of a Standalone PV System with a New Proposed MPPT Method
Abdellahi Ba, Chighali Ehssein, Assia Benkaddour, Aroudam El Hassan.
2020 11th International Renewable Energy Congress (IREC),
2020.
doi: 10.1109/IREC48820.2020.9310390
Copyright (c) 2019 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)

This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.