Analysis of a Novel Four Level Flying Capacitor H – Bridge Converter


In this paper, a novel four-level flying capacitor inverter and its comparison with the conventional flying capacitor topology in terms of THD analysis are proposed. This new topology have some advantages over conventional one as following: The blocking voltages are the same for all switches used in the configuration, there is no need for capacitor midpoint connection and this eliminates low frequency current which circulate in dc-link capacitors, and the number of flying capacitor is reduced as compared with conventional form of it. The operation of the topology, modulation strategy, simulation results, and THD analysis for the output waveforms are presented in this paper.
Article History: Received: 17th July 2017; Received: October 14th 2017; Accepted: Januari 18th 2018; Available online
How to Cite This Article: Gülpınar, F., Sarı, F., and Uzun, Y. (2017) Analysis of a Novel Four Level Flying Capacitor H – Bridge Converter. International Journal of Renewable Energy Development, 7(1), 71-75.
https://doi.org/10.14710/ijred.7.1.71-75
Article Metrics:
- Akagi, H. (2017) Multilevel Converters: Fundamental Circuits and Systems. Proceedings of the IEEE, 105(11), 2048 - 2065
- Chen, A., Zhang, C., Ma, H. & Deng, Y. (2008) A novel multilevel inverter topology with no clamping diodes and flying capacitors. IEEE 34th Annual Conference Industrial Electronics
- Choi, S. & Saeedifard, M. (2012) Capacitor voltage balancing of flying capacitor multilevel converters by space vector PWM. IEEE Transactions on Power Delivery 27(3), 1154-1161
- Daher, S., Schmid, J. & Antunes F.L.M. (2008) Multilevel inverter topologies for stand-alone PV systems. IEEE Transactions on Industrial Electronics, 55(7) 2703-2712
- Dos Santos, E. C., Gulpinar F. & Da Silva E.R.C. (2014) Flying capacitor four-level H-Bridge converter. Power and Energy Conference at Illinois (PECI)
- Gautam, S. P., Gupta, S. & Kumar, L. (2017) Reliability improvement of transistor clamped H-bridge-based cascaded multilevel inverter. IET Power Electronics, 10 (7), 770-781
- Joca, D. R., Barreto L.H.S.C., Oliveira, D. de S., Silva, R.N.A.L. & Henn, G.A.L (2012) Modulation technique based on CSV-PWM and HEPWM for THD reduction in flying capacitor multilevel inverters. 10th IEEE/IAS International Conference on Industry Applications (INDUSCON)
- Lai J.S. & Peng F.Z. (1996) Multilevel converters-a new breed of power converters. IEEE Transactions on Industry Applications, 32(3), 509-517
- Prabaharan, N. & Palanisamy, K. (2017) A comprehensive review on reduced switch multilevel inverter topologies, modulation techniques and applications. Renewable and sustainable Energy Reviews, 76, 1248 – 1282
- Radermacher, H., Schmidt, B. D. & De Doncker R.W. (2004) Determination and comparison of losses of single phase multi-level inverters with symmetric supply. IEEE 35th Annual Power Electronics Specialists Conference
- Rahmani, S. & Al-Haddad, K. (2006) A single phase multilevel hybrid power filter for electrified railway applications. IEEE International Symposium on Industrial Electronics
- Rodriguez J., Lai, J. S. & Peng F. Z. (2002) Multilevel inverters: a survey of topologies, controls, and applications. IEEE Transactions on Industrial Electronics, 49(4), 724-738
- Sathiyanarayanan J. S. & Kumar A. S. (2013) Power Quality Improvement Wind Energy System Using Cascaded Multilevel Inverter. International Journal of Renewable Energy Development, 2(1), 35-43
Last update: 2021-03-05 03:24:19
Last update: 2021-03-05 03:24:20

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.