Modeling and PSO optimization of Humidifier-Dehumidifier desalination

*Mohammad Hossein Ahmadi -  Shahrood University of Technology, Iran, Islamic Republic of
Mohammad Ali Afshar -  Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran, Iran, Islamic Republic of
Ali Naseri -  Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran, Iran, Islamic Republic of
Mokhtar Bidi -  Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran, Iran, Islamic Republic of
H. Hadiyanto -  Departement of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, SH-Tembalang, Semarang, 50275, Indonesia, Indonesia
Published: 18 Feb 2018.
Open Access Copyright (c) 2017 International Journal of Renewable Energy Development
Citation Format:
Article Info
Section: Original Research Article
Language: EN
Full Text:
Statistics: 3002 471
Abstract

The aim of this study is modeling a solar-air heater humidification-dehumidification unit with applying particle swarm optimization to find out  the maximum gained output ratio with respect to the mass flow rate of water and air entering humidifier, mass flow rate of cooling water entering dehumidifier, width and length of solar air heater and terminal temperature difference (TTD) of dehumidifier representing temperature difference of inlet cooling water and saturated air to dehumidifier as its decision variable. A sensitivity analysis, furthermore, is performed to distinguish the effect of operating parameters including mass flow rate and streams’ temperature. The results showed that the optimum productivity decreases by decreasing the ratio of mass flow rate of water entering humidifier to air ones.

Article History: Received: July 12th 2017; Revised: December 15th 2017; Accepted: 2nd February 2018; Available online

How to Cite This Article: Afshar, M.A., Naseri, A., Bidi, M., Ahmadi, M.H. and Hadiyanto, H. (2018) Modeling and PSO Optimization of Humidifier-Dehumidifier Desalination. International Journal of Renewable Energy Development, 7(1),59-64.

https://doi.org/10.14710/ijred.7.1.59-64

Keywords
humidification-dehumidification desalination, GOR, solar air collector, PSO

Article Metrics:

  1. Mistry, K. H., Mitsos, A., & Lienhard, J. H. (2011). Optimal operating conditions and configurations for humidification–dehumidification desalination cycles. International Journal of Thermal Sciences, 50(5), 779-789.
  2. Mehrgoo, M., & Amidpour, M. (2011). Derivation of optimal geometry of a multi-effect humidification–dehumidification desalination unit: A constructal design. Desalination, 281, 234-242.
  3. Mehrgoo, M., & Amidpour, M. (2011). Constructal design of humidification–dehumidification desalination unit architecture. Desalination, 271(1), 62-71.
  4. Mehrgoo, M., & Amidpour, M. (2012). Constructal design and optimization of a direct contact humidification–dehumidification desalination unit. Desalination, 293, 69-77.
  5. El-Aziz, K. M. A., Hamza, K., El Morsi, M., Nassef, A. O., Metwalli, S. M., & Saitou, K. (2014, August). Optimum Solar HDH Desalination for Semi-Isolated Communities Using HGP and GA’s. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. V02AT03A020-V02AT03A020). American Society of Mechanical Engineers.
  6. González, R., Pieretti, P., & Díaz, H. (2009, January). Design Algorithm of a Multi-Effect Humidification–Dehumidification Solar Distillation System. In ASME 2009 International Mechanical Engineering Congress and Exposition (pp. 111-115). American Society of Mechanical Engineers.
  7. Younis, M. A., Darwish, M. A., & Juwayhel, F. (1993). Experimental and theoretical study of a humidification-dehumidification desalting system. Desalination, 94(1), 11-24.
  8. Chafik, E. (2003). A new seawater desalination process using solar energy. Desalination, 153(1-3), 25-37.
  9. Yamalı, C., & Solmuş, İ. (2007). Theoretical investigation of a humidification-dehumidification desalination system configured by a double-pass flat plate solar air heater. Desalination, 205(1-3), 163-177.
  10. Kalogirou, S. A. (2013). Solar energy engineering: processes and systems. Academic Press.
  11. Naseri, A., Bidi, M., Ahmadi, M. H., & Saidur, R. (2017). Exergy analysis of a hydrogen and water production process by a solar-driven transcritical CO 2 power cycle with Stirling engine. Journal of Cleaner Production, 158, 165-181.
  12. Naseri, A., Bidi, M., & Ahmadi, M. H. (2017). Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO 2 power cycle with liquefied natural gas heat sink. Renewable Energy.
  13. Al-Sahali, M., & Ettouney, H. M. (2008). Humidification dehumidification desalination process: Design and performance evaluation. Chemical Engineering Journal, 143(1), 257-264.
  14. Sun, Z., Wang, J., Dai, Y., & Wang, J. (2012). Exergy analysis and optimization of a hydrogen production process by a solar-liquefied natural gas hybrid driven transcritical CO 2 power cycle. international journal of hydrogen energy, 37(24), 18731-18739.
  15. Soufari, S. M., Zamen, M., & Amidpour, M. (2009). Performance optimization of the humidification–dehumidification desalination process using mathematical programming. Desalination, 237(1-3), 305-317.
  16. Zamen, M., Amidpour, M., & Soufari, S. M. (2009). Cost optimization of a solar humidification–dehumidification desalination unit using mathematical programming. Desalination, 239(1-3), 92-99.