skip to main content

Cost optimization for the 100% renewable electricity scenario for the Java-Bali grid

1Swiss German University, Indonesia

2Ernst-Abbe-Hochschule Jena, Germany

Published: 15 Dec 2018.
Editor(s): H Hadiyanto

Citation Format:
Abstract

A 100% renewable electricity supply is no insurmountable technical problem anymore after the respective technologies to harvest the energy from multiple renewable energy sources have been developed and have reached a high level of maturity. A problem may rather be suspected to reside on the economic side of an exclusively renewable electricity supply. The present study examines the economic implications of a renewable energy scenario for the Java-Bali grid. Based on given energy supply scenarios, the costs of an electricity supply from renewable energy sources alone are determined. Economic optimum configurations are determined for which the annual system costs and accordingly the power generation costs are minimized. First the system running costs are considered, i.e. the operation and maintenance costs as well as the costs of the continuous renovation of system components, while capital costs are not taken into account. After this the capital costs are taken into consideration, and total system costs and power generation costs are determined. The main result is a specification of economic optimum system configurations. One important result is that a future electricity supply from renewable resources alone is not more expensive than the current power generation in developed countries. Another result is that the integration of special long-term storage into the Java-Bali grid, like for instance methane storages, besides pumped storages and batteries, is not economically favourable if further moderate battery cost reductions are reached.

Article History: Received May 18th 2018; Received in revised form August 16th 2018; Accepted October 1st 2018; Available online

How to Cite This Article: Günther, M., Eichinger, M., (2018) Cost Optimization for the 100% Renewable Electricity Scenario for the Java-Bali Grid, International Journal of Renewable Energi Development, 7(3), 269-276.

https://doi.org/10.14710/ijred.7.3.269-276

Fulltext View|Download
Keywords: energy system modeling; electricity cost; cost optimization; energy scenario
Funding: Swiss German University

Article Metrics:

  1. Agentur für Erneuerbare Energien (2012), Studienvergleich: Entwicklung der Instititionskosten neuer Kraftwerke,
  2. http://www.forschungsradar.de/uploads/media/AEE_Dossier_Studienvergleich_Investitionskosten_nov12.pdf
  3. Agora Energiewende (2014), Stromspeicher in der Energiewende: Untersuchung zum Bedarf an neuen Stromspeichern in Deutschland für den Erzeugungsausgleich, Systemdienstleistungen und im Verteilnetz, https://www.agora-energiewende.de/fileadmin/downloads/publikationen/Studien/Speicher_in_der_Energiewende/Agora_Speicherstudie_Web.pdf
  4. Albrecht, U., Altmann, M., Michalski, J., Raksha, T., Weindorf, W. (2013), Analyse der Kosten Erneuerbare Gase. Eine Expertise der Ludwig-Bölkow-Systemtechnik GmbH, http://www.lbst.de/download/2014/20131217_BEE-PST_LBST_Studie_EEGase.pdf
  5. Badan Pusat Statistik (2016) Listrik yang Distribusikan Menurut Provinsi 2011-2015. https://www.bps.go.id/linkTabelStatis/view/id/1862
  6. Conrad, J., Pellinger, C., Hinterstocker, M. (2014), Gutachten zur Rentabilität von Pumpspeicherkraftwerken, on behalf of the Bavarian State Ministry of Economy, Media, Energy and Technnology, https://www.stmwi.bayern.de/fileadmin/user_upload/stmwi/Themen/Energie_und_Rohstoffe/Dokumente_und_Cover/2014-Pumpspeicher-Rentabilitaetsanalyse.pdf
  7. Fraunhofer ISE (2015) Current and Future Cost of Photovoltaics. Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems
  8. Günther, M., Ganal, I., Bofinger, S. (2018) A 100% Renewable Energy Scenario for the Java-Bali Grid. In: Journal of Renewable Energy Development
  9. Hartmann, C. (2014), Systemanalyse der CO2-Sequestrierung aus Biomasse-Heizkraftwerken: Technik, Wirtschaftlichkeit, Nachhaltigkeit, https://www.zhb-flensburg.de/fileadmin/content/spezial-einrichtungen/zhb/dokumente/dissertationen/hartmann/141024-dissertation-ch.pdf
  10. Institute for Energy Research (2017), Energy Generating Costs. https://instituteforenergyresearch.org/analysis/electric-generating-costs-a-primer/
  11. IRENA (2012a), Renewable Energy Technologies: cost analysis series: Hydropower, https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-hydropower.pdf
  12. IRENA (2012b), Renewable Energy Technologies: Cost Analysis Series: Biomass, https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-BIOMASS.pdf
  13. IRENA (2015), Renewable Power Generation Costs in 2014, https://www.irena.org/DocumentDownloads/Publications/IRENA_RE_Power_Costs_2014_report.pdf
  14. Kost, C., Shivenes, S., Nguyen, H.-T., Schlegl, T. (2018), Stromgestehungskosten Erneuerbare Energien, Fraunhofer ISE 2018, https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2018_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf
  15. Limattaler Zeitung (2012), Für 21 Millionen entsteht ein riesiger Erdgasspeicher, https://www.limmattalerzeitung.ch/limmattal/region-limmattal/fuer-21-millionen-entsteht-ein-riesiger-erdgasspeicher-125016057
  16. Lödl, M. et al. (2010) Abschätzung des Photovoltaik-Potentials. 11. Symposium Energieinnovation, 10th - 12th February 2010, Graz/Austria, https://mediatum.ub.tum.de/doc/969497/file.pdf
  17. MEMR (2017), Keputusan Menteri Energi and Sumber Daya Mineral Republik Indonesia Nomor 1404 K/20/MEM/2017 tentang biaya pokok penyediaan pembangkitan PT Perusahaan Listrik Negera, http://jdih.esdm.go.id/peraturan/Kepmen-esdm-1404-Th2017.pdf
  18. PLN (2017) Rencana Usaha Penyediaan Tenaga Listrik PT Perusahaan Listrik Negara (persero), tahun 2013 s.d. 2022, 2015 s.d. 2024, 2016 s.d. 2025
  19. http://www.djk.esdm.go.id/index.php/rencana-ketenagalistrikan/ruptl-pln
  20. Sanchez, L., Lontoh, L., Christensen, L.T. 2017, Case Study: What is the true cost of coal in Central Java? The International Institute for Sustainable Development
  21. https://www.iisd.org/sites/default/files/publications/case-study-what-true-cost-coal-central-java.pdf

Last update:

  1. Potential Classification Prediction of Solar and Wind Energy in Indonesia using Machine Learning with Random Forest Algorithm

    Deden Ardiansyah, Teddy Mantoro, Wahyul Amien Syafei. 2022 5th International Conference of Computer and Informatics Engineering (IC2IE), 2022. doi: 10.1109/IC2IE56416.2022.9970129
  2. An Optimal Model to Meet the Hourly Peak Demands of a Specific Region With Solar, Wind, and Grid Supplies

    B. Priyadharshini, Velappa Ganapathy, Priyanka Sudhakara. IEEE Access, 8 , 2020. doi: 10.1109/ACCESS.2020.2966021
  3. Renewable energy education and awareness among Indonesian students: Exploring challenges and opportunities for a sustainable future

    Nugroho Agung Pambudi, Iksan Riva Nanda, Fitria Tahta Alfina, Anne Zulfia Syahrial. Sustainable Energy Technologies and Assessments, 63 , 2024. doi: 10.1016/j.seta.2024.103631
  4. Review on 100% Renewable Energy System Analyses—A Bibliometric Perspective

    Siavash Khalili, Christian Breyer. IEEE Access, 10 , 2022. doi: 10.1109/ACCESS.2022.3221155
  5. Assembly of quinone-based renewable biobattery using redox molecules from Lawsonia inermis

    Halima Ali, Immaculata O. Onuigbo, Tosin E. Fabunmi, Muhammed Yahaya, Madu Joshua, Bolade Agboola, Wan Jin Jahng. SN Applied Sciences, 1 (6), 2019. doi: 10.1007/s42452-019-0577-2
  6. Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System

    Jannis Langer, Jaco Quist, Kornelis Blok. Energies, 14 (21), 2021. doi: 10.3390/en14217033
  7. 100% renewable fueled mine

    Alberto Romero, Dean Millar, Monica Carvalho, Raphael Abrahão. Energy, 205 , 2020. doi: 10.1016/j.energy.2020.117964

Last update: 2024-10-08 05:41:07

  1. An Optimal Model to Meet the Hourly Peak Demands of a Specific Region With Solar, Wind, and Grid Supplies

    B. Priyadharshini, Velappa Ganapathy, Priyanka Sudhakara. IEEE Access, 8 , 2020. doi: 10.1109/ACCESS.2020.2966021
  2. Assembly of quinone-based renewable biobattery using redox molecules from Lawsonia inermis

    Halima Ali, Immaculata O. Onuigbo, Tosin E. Fabunmi, Muhammed Yahaya, Madu Joshua, Bolade Agboola, Wan Jin Jahng. SN Applied Sciences, 1 (6), 2019. doi: 10.1007/s42452-019-0577-2
  3. 100% renewable fueled mine

    Alberto Romero, Dean Millar, Monica Carvalho, Raphael Abrahão. Energy, 205 , 2020. doi: 10.1016/j.energy.2020.117964