skip to main content

Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues

1Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jalan Kapas 9, Yogyakarta 55166, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Yogyakarta 55284, Indonesia

3Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Jalan SWK 104, Yogyakarta 55283, Indonesia

4 Center of Biomass and Renewable Energy (CBIORE), Chemical Engineering Department, Diponegoro University, Jl.Prof Soedarto,SH-Tembalang, Semarang, Indonesia

5 Center for Energy Studies, Universitas Gadjah Mada, Sekip K1A, Yogyakarta 55284, Indonesia

View all affiliations
Received: 16 Jan 2019; Revised: 20 Apr 2019; Accepted: 6 May 2019; Available online: 15 Jul 2019; Published: 13 Jun 2019.
Editor(s): Marcelinus Christwardana, H Hadiyanto

Citation Format:
Cover Image
Abstract

Today’s needs of energy are yet globally dominated by fossil energy sources, causing the depletion of non-renewable energy. Alternatively, a potential substitute is the energy of biomass. Spirulina platensis (SP) is a microalgae biomass which, if extracted, will produce solid waste called Spirulina platensis residue (SPR). This research explores the pyrolysis product, produced within the range of 300 – 600 ºC, from the pyrolysis of SP and SPR using fixed bed reactors. The influence of temperature on pyrolysis product’s yield and characteristics are investigated by using mass balance method and gas chromatography – mass spectrometry (GC-MS) technique, respectively. The results from mass balance method present an optimum pyrolysis temperature of 550 ºC to obtain the desired liquid product of bio-oil, presenting the percentage of 34.59 wt.% for SP and 33.44 wt.% for SPR case. Additionally, with the increasing temperature, the char yield decreases for about 30 wt.% and the yield of gas seems to sharp increase from 550 to 600 ºC. These tendencies are both applied for SP and SPR source pyrolysis product. Interestingly, the benefit use as fossil fuel substitute might be derived, thanks to high HHV at the bio-oil product (32.04 MJ/kg for SP and 25.70 MJ/kg for SPR) and also at the char product with of 18.85-26.12 MJ/kg for both cases. The additional benefit come from the high content of C in its char product (50.31 wt.% for SPR and 45.26 wt.% for SP) that might be able to be used as an adsorbent, soil softener or other uses in the pharmaceutical field. ©2019. CBIORE-IJRED. All rights reserved

Fulltext View|Download
Keywords: Spirulina platensis; Spirulina platensis residue; Pyrolysis; Fixed-bed reactor; Biofuels; Chemicals

Article Metrics:

  1. Anggorowati, H., Jamilatun, S., Rochim, B., Cahyono and Budiman, A. (2017) Effect of hydrochloric acid concentration on the conversion of sugarcane bagasse to levulinic acid, IOP Conf. Ser.: Material Science and Engineering, 299: 012092
  2. Basu, P. (2010) Biomassa gasification and pyrolysis practical design and theory, Elsevier, The Boulevard, Langford Lane Kidlington, Oxford, UK, pp. 77-82
  3. BP. Energy Outlook, https://www.bp.com/en/global/corporate/energy/Economics/energy-outlook.html, (25 January 2018)
  4. Chaiwong, K., Kiatsiriroat, T., Vorayos, N. and Thararax, C. (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis, Biomass Bioenergy, 56: 600-606
  5. Enzing, C., Ploeg, M. and Barbosa, M. (2014) Microalgae-based products for the food and feed sector: an outlook for Europe, Lolke Sijtsma, doi: 10.2791/3339,Luxembourg:PublicationsOfficeoftheEuropeanUnion
  6. Fogler, H.S. (2006) Element of Chemical Reaction Engineering, 3nd Edition, Prentice-Hall International, Inc
  7. Giacomo, G.D. and Taglieri, L. (2018) Development and Evaluation of a New Advanced Solid Bio-Fuel and Related Production Process, International Journal of Renewable Energy Research, 3(2), 255-260
  8. Hadiyanto, Widayat and Kumoro, AC. (2012a), Potency of Microalgae as Biodiesel Source in Indonesia, International Journal of Renewable Energy Development, 1, 23-27
  9. Hadiyanto, Azimatun Nur, M.M. and Hartanto, G.D. (2012b) Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME), International Journal of Renewable Energy Development, 1 (2), 45-49
  10. Huanga, F., Tahmasebia, A., Maliutinaa, K. and Yua, J. (2017) Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways, Bioresource Technology, 245: 1067–1074
  11. International Energy Agency, 2018, Key world energy statistics, http://data.iea.org//payment/products/118-world-energy statistics-2018-edition.aspx., 2017 (5 Januari 2018),
  12. Jamilatun, S., Budhijanto, Rochmadi, and Budiman, A. (2017) Non−catalytic slow pyrolysis of Spirulina platensis residue for production of liquid biofuel, International Journal of Renewable Energy Research, 7(4): 101−1908
  13. Jamilatun, S., Budhijanto, Rochmadi, Yuliestyan, A., and Budiman, A. (2019a) Effect of grain size, temperature, and amount of catalyst on characteristics of pyrolysis products from spirulina platensis residue (SPR), International Journal of Technology 10(3): 541-550
  14. Jamilatun, S, Budhijanto, Rochmadi, Yuliestyan, A., and Budiman, A (2019b) Valuable Chemicals Derived from Pyrolysis Liquid Products of Spirulina platensis Residue, Indones. J. Chem., 19 (3), 703 – 711
  15. Li, G., Zhou, Y., Ji, F., Liu, Y., Adhikari, B., Tian, L., Ma, Z. and Dong, R. (2013) Yield and Characteristics of Pyrolysis Products Obtained from Schizochytrium limacinum under Different Temperature Regimes, Energies 2013, 6, 3339-3352
  16. Lingbeck, J.M., Cordero, P., O'Bryan, C.A., Johnson, M.G., Ricke, S.C. and Crandall, P.G. (2014) Functionality of liquid smoke as an all-natural antimicrobial in food preservation, Meat Science, 97: 197–206
  17. Ledesma, E., Rendueles, M. and Díaz,M. (2016) Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention, Food Control, 60: 64-87
  18. Maity, J.P., Bundschuh, J., Chen, C-Y. and Bhattacharya, P. (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives, A mini review. Energy, 78: 1-10
  19. Ojolo, S.J, Oshekub, C.A., and Sobamowoa, M.G., (2013) Analytical investigations of kinetic and heat transfer in slow pyrolysis of a biomass particle, Int. J. Renew. Energ. Dev., 2 (2), 105-115
  20. Pradana, Y.S., Hidayat, A., Prasetya, A. and Budiman, A. (2017) Biodiesel production in a reactive distillation column catalyzed by heterogeneous potassium catalyst, Energy Procedia, 143: 742-747
  21. Pradana, Y.S., Masruri, W., Azmi, . F.A., Suyono, E.A., Sudibyo, H. and Rochmadi, (2018a) Extractive-transesterification of Microalgae Arthrospira sp. Using Methanol-Hexane Mixture as Solvent, International Journal of Renewable Energy Research, 8 (3), 1499-1507
  22. Pradana, Y.S., Azmi, F.A., Masruri, W. and Hartono, M. (2018b) Biodiesel Production from Wet Spirulina sp. by One-Step Extraction-Transesterification, MATEC Web of Conferences, 156: 03009
  23. Roser, M. and Ortiz-Ospina, E. (2017) World Population Growth, https://ourworldindata.org/world-population-growth, (10 Desember 2017)
  24. Suali, E. and Sarbatly, R. (2012) Conversion of microalgae to biofuel, Renewable and Sustainable Energy Reviews, 16, 4316– 4342
  25. Sumprasit, N., Wagle, N., Glanpracha, N. And Annachhatre, A.P. (2017) Biodiesel and biogas recovery from Spirulina platensis, International Biodeterioration and Biodegradation, 119, 196-204
  26. Samanya, J., Hornung, A., Jones, M. and Vale, P. (2011) Thermal stability of Sewage Sludge Pyrolysis oil, International Journal of Renewable Energy Research, 1(3), 66-74
  27. Sunarno, Rochmadi, Mulyono, P., Aziz, M. and Budiman, A. (2018) Kinetic study of catalytic cracking of bio-oil over silica-alumina catalyst, Bioresources, 13(1), 1917-1929
  28. Soares, J.M., da Silva, P.F., Puton B.M.S., Brustolin A.P., Cansian R.L., Dallago R.M. and Valduga E. (2016) Antimicrobial and antioxidant activity of liquid smoke and its potential application to bacon, Innovative Food Science and Emerging Technologies, 38 (2016) 189–197
  29. Wang N, Tahmasebi A, Yu J, Xu J, Huang F. And Mamaeva A. (2016) A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass, Bioresource Technol., 190 (2015) 89–96
  30. Wicakso, D.R., Sutijan, Rochmadi, and Budiman, A (2016) Catalytic decomposition of tar derived from wood waste pyrolysis low grade iron ore as catalyst, AIP Conference Proceedings 1737 (2016), 060009
  31. Yuarrina, W.P., Pradana, Y.S., Budiman, A., Majid, A.I., Indarto, and Suyono, E.A. (2018) Study of cultivation and growth rate kinetic for mixed cultures of local microalgae as third generation (G-3) bioethanol feedstock in thin layer photobioreactor, Journal of Physics: Conference Series, 1022: 012051
  32. Yang, C., Li, R., Zhang, B., Qiud, Q., Wang, B., Yang, H., Ding, Y., and Wang, C. (2019) Pyrolysis of microalgae: A critical review, Fuel Processing Technology, 186, 53–72
  33. Zighmi, S., Ladjel, S., Goudjil, M.B. and Bencheikh, S.E. (2016) Renewable Energy from the Seaweed Chlorella Pyrenoidosa Cultivated in Developed Systems, International Journal of Renewable Energy Research, 7(1), 50-57

Last update:

  1. Varied Pyrolysis Behaviors of Typical Forestry, Kitchen, and Manure Wastes in CO2

    Xin Zhong, Chao Li, Lihua Wang, Lijun Zhang, Shu Zhang, Yi Wang, Song Hu, Jun Xiang, Xun Hu. ACS Sustainable Resource Management, 1 (3), 2024. doi: 10.1021/acssusresmgt.3c00095
  2. Biotechnological investigation of Pediastrum boryanum and Desmodesmus subspicatus microalgae species for a potential application in bioenergy

    Gislayne Santana Santos Jacinto, Glauber Cruz, Aluísio Alves Cabral, Glauco Vinicius Palhano Bezerra, Ramón R. Peña Garcia, Ulisses Nascimento Magalhães, Wolia Costa Gomes. Algal Research, 75 , 2023. doi: 10.1016/j.algal.2023.103266
  3. Bio-Oil Characterizations of Spirulina Platensis Residue (SPR) Pyrolysis Products for Renewable Energy Development

    Siti Jamilatun, Aster Rahayu, Yano Surya Pradana, Budhijanto, Rochmadi, Arief Budiman. Key Engineering Materials, 849 , 2020. doi: 10.4028/www.scientific.net/KEM.849.47
  4. Pyrolysis-GCMS of Spirulina platensis: Evaluation of biomasses cultivated under autotrophic and mixotrophic conditions

    Sueilha F. A. Paula, Bruna M. E. Chagas, Maria I. B. Pereira, Adriano H. N. Rangel, Cristiane F. C. Sassi, Luiz H. F. Borba, Everaldo S. Santos, Estefani A. Asevedo, Fabiana R. A. Câmara, Renata M. Araújo, Md. Asraful Alam. PLOS ONE, 17 (10), 2022. doi: 10.1371/journal.pone.0276317
  5. Characteristics of pyrolysis products from pyrolysis and co-pyrolysis of rubber wood and oil palm trunk biomass for biofuel and value-added applications

    Patipan Sakulkit, Arkom Palamanit, Racha Dejchanchaiwong, Prasert Reubroycharoen. Journal of Environmental Chemical Engineering, 8 (6), 2020. doi: 10.1016/j.jece.2020.104561
  6. Upgrading of pyrolysis oil via catalytic co-pyrolysis of treated palm oil empty fruit bunch and plastic waste

    Sunarno Sunarno, Ida Zahrina, Widia Riski Nanda, Amun Amri. Biomass Conversion and Biorefinery, 2022. doi: 10.1007/s13399-021-02243-w
  7. Conversion of bio-coke from Spirulina platensis microalgae as an alternative sustainable energy

    Nur Syahirah Kamal Baharin, Yoshinobu Ikeda, Ken Moizumi, Tamio Ida. Case Studies in Chemical and Environmental Engineering, 9 , 2024. doi: 10.1016/j.cscee.2024.100709
  8. Optimization of pyrolytic oil production from coconut shells by microwave-assisted pyrolysis using activated carbon as a microwave absorber

    Sinar Perbawani Abrina Anggraini, Suprapto Suprapto, Sri Rachmania Juliastuti, Mahfud Mahfud. International Journal of Renewable Energy Development, 13 (1), 2024. doi: 10.14710/ijred.2024.56287
  9. Kinetic Study of Levulinic Acid from Spirulina platensis Residue

    Retno Ringgani, Muhammad Mufti Azis, Rochmadi, Arief Budiman. Applied Biochemistry and Biotechnology, 194 (6), 2022. doi: 10.1007/s12010-022-03806-x
  10. Kinetics of In-Situ Catalytic Pyrolysis of Rice Husk Pellets Using a Multi-Component Kinetics Model

    Wusana Agung Wibowo, Rochim Bakti Cahyono, Rochmadi Rochmadi, Arief Budiman. Bulletin of Chemical Reaction Engineering & Catalysis, 18 (1), 2023. doi: 10.9767/bcrec.17226
  11. Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review

    Mariana Abreu, Luís Silva, Belina Ribeiro, Alice Ferreira, Luís Alves, Susana M. Paixão, Luísa Gouveia, Patrícia Moura, Florbela Carvalheiro, Luís C. Duarte, Ana Luisa Fernando, Alberto Reis, Francisco Gírio. Energies, 15 (12), 2022. doi: 10.3390/en15124348
  12. Microwave Pyrolysis Combined with CO2 and Steam as Potential Approach for Waste Valorization

    Shin Ying Foong, Rock Keey Liew, Bernard How Kiat Lee, Su Shiung Lam. Key Engineering Materials, 914 , 2022. doi: 10.4028/p-q43662
  13. Biomass waste pyrolysis in the context of Nigeria’s oil and gas industry: an overview

    Abiodun Oluwatosin Adeoye, Rukayat Oluwatobiloba Quadri, Olayide Samuel Lawal. International Journal of Ambient Energy, 44 (1), 2023. doi: 10.1080/01430750.2023.2256325
  14. Biomass Feedstocks for Liquid Biofuels Production in Hawaii & Tropical Islands: A Review

    Muhammad Usman, Shuo Cheng, Jeffrey Scott Cross. International Journal of Renewable Energy Development, 11 (1), 2022. doi: 10.14710/ijred.2022.39285
  15. Effect of Devices and Driving Pressures on Energy Requirements and Mass Transfer Coefficient on Microalgae Lipid Extraction Assisted by Hydrodynamic Cavitation

    Martomo Setyawan, Panut Mulyono, Sutijan Sutijan, Yano Surya Pradana, Laras Prasakti, Arief Budiman. International Journal of Renewable Energy Development, 9 (3), 2020. doi: 10.14710/ijred.2020.26773
  16. Recent advances in hydrogen production from biomass waste with a focus on pyrolysis and gasification

    Van Giao Nguyen, Thanh Xuan Nguyen-Thi, Phuoc Quy Phong Nguyen, Viet Dung Tran, Ümit Ağbulut, Lan Huong Nguyen, Dhinesh Balasubramanian, Wieslaw Tarelko, Suhaib A. Bandh, Nguyen Dang Khoa Pham. International Journal of Hydrogen Energy, 54 , 2024. doi: 10.1016/j.ijhydene.2023.05.049
  17. Track to reach net-zero: Progress and pitfalls

    Suhaib A Bandh, Fayaz A Malla, Tuan-Dung Hoang, Irteza Qayoom, Haika Mohi-Ud-Din, Shahnaz Bashir, Richard Betts, Thanh Tuan Le, Duc Trong Nguyen Le, Nguyen Viet Linh Le, Huu Cuong Le, Dao Nam Cao. Energy & Environment, 2024. doi: 10.1177/0958305X241260793
  18. Catalytic Co-Pyrolysis of Palm Oil Empty Fruit Bunch and Coal into Liquid Oil

    Sunarno Sunarno, Ronna Puspita Sari, Tifanny Frimacia, Silvia Reni Yenti, Panca Setia Utama, Edy Saputra. International Journal of Renewable Energy Development, 11 (2), 2022. doi: 10.14710/ijred.2022.42193
  19. Pathway of sustainable fuel development with novel generation biofuels

    Danh Chan Nguyen, Van Viet Pham. INTERNATIONAL CONFERENCE ON EMERGING APPLICATIONS IN MATERIAL SCIENCE AND TECHNOLOGY: ICEAMST 2020, 2235 , 2020. doi: 10.1063/5.0007654
  20. The effect of hot compressed water on ion released of a wasted biomass treatment

    Miftahul Choiron, Seishu Tojo. THE 5th INTERNATIONAL CONFERENCE ON AGRICULTURE AND LIFE SCIENCE 2021 (ICALS 2021): “Accelerating Transformation in Industrial Agriculture Through Sciences Implementation”, 2583 , 2023. doi: 10.1063/5.0116208

Last update: 2024-11-23 15:48:14

No citation recorded.