skip to main content

Two-Phase Expander Approach for Next Generation of Heat Recovery Systems

Advanced Engineering Centre, School of Computing, Engineering and Mathematics, University of Brighton, United Kingdom

Received: 11 Sep 2019; Revised: 20 Oct 2019; Accepted: 25 Oct 2019; Available online: 30 Oct 2019; Published: 27 Oct 2019.
Editor(s): H Hadiyanto

Citation Format:
Cover Image
Abstract
This study presents the numerical adaptations to the semi-empirical expander model in order to examine the feasibility of piston expanders under off-design and two-phase scenarios. This expander model considers supply valve pressure drop, condensation phenomena, heat losses, leakage losses and friction losses. Using Aspen HYSYS©, the expander model is utilised in simulating the next generation of integrated engine cooling and exhaust heat recovery system for future heavy-duty engines. The heat recovery system utilises water-propanol working fluid mixture and consists of independent high pressure (HP) and low pressure (LP) expander. The results of off‑design and two-phase operation are presented in terms of expander efficiency and the different sources of loss, under two distinctive engine speed-load conditions. The heat recovery system, operating with the LP expander at two-phase and the HP expander at superheated condition, represented the design point condition. At the design point, the system provided 15.9 kW of net power, with an overall conversion efficiency of 11.4%, representing 10% of additional engine crankshaft power. At the extreme off-design condition, the two-phase expander operation improved the system performance as a result of the nullification of leakage losses due to the much denser working fluid. The optimised two-phase operation of the LP expander (x=0.55) and the HP expander (x=0.9) at the extreme-off design condition improved the system power by nearly 50% (17.4 vs. 11.7 kW) compared to the reference state. Finally, adapting piston air motors as two-phase expanders for experimental evaluation and reduction in frictional losses was a recommended research direction. ©2019. CBIORE-IJRED. All rights reserved
Fulltext View|Download
Keywords: Two-Phase; Waste Heat Recovery; Piston Expander; Friction; Heat Transfer

Article Metrics:

  1. Amsyari, M., Secretary, C., Badak, P. T., Sutedjo, M., Manager, G., Bahana, P. T. I., … Corporation, E. I. (2007). Using Two-Phase Lng Expanders To Extend Lifetime of Depleting Gas Wells or for Nitrogen Rejection X2. 15th International Conference & Exhibition on Liquefied Natural Gas (LNG 15), 55. Barcelona, Spain
  2. Automotive Council and Advanced Propulsion Centre. (2018). The Roadmap Report - Towards 2040: a Guide To Automotive Propulsion Technologies. Retrieved from https://www.apcuk.co.uk/app/uploads/2018/06/roadmap-report-26-6-18.pdf
  3. Bernagozzi, M., Charmer, S., Georgoulas, A., Malavasi, I., Michè, N., & Marengo, M. (2018). Lumped parameter network simulation of a Loop Heat Pipe for energy management systems in full electric vehicles. Applied Thermal Engineering, 141, 617–629. https://doi.org/10.1016/j.applthermaleng.2018.06.013
  4. Bianchi, G., Kennedy, S., Zaher, O., Tassou, S. A., Miller, J., & Jouhara, H. (2017). Two-phase chamber modeling of a twin-screw expander for Trilateral Flash Cycle applications. Energy Procedia, 129, 347–354. https://doi.org/10.1016/j.ijrefrig.2018.02.001
  5. BorgWarner. (2018). Converting Waste Heat into Electrical Energy: BorgWarner’s Organic Rankine Cycle. Auburn Hills
  6. Chen, S. K., & Flynn, P. F. (1965). Development of a Single Cylinder Compression Ignition Research Engine. National Powerplant and Transportation Meetings. https://doi.org/https://doi.org/10.4271/650733
  7. Derby, M., Lee, H. J., Peles, Y., & Jensen, M. K. (2012). Condensation heat transfer in square, triangular, and semi-circular mini-channels. International Journal of Heat and Mass Transfer, 55(1–3), 187–197. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.002
  8. Dumont, O., Dickes, R., & Lemort, V. (2017). Extrapolability and limitations of a semi-empirical model for the simulation of volumetric expanders. Energy Procedia, 129, 315–322. https://doi.org/10.1016/j.egypro.2017.09.198
  9. EU Energy Efficiency Plan. (2011). Brussels
  10. Giuffrida, A. (2017). Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles. Applied Energy, 193, 356–368. https://doi.org/10.1016/j.apenergy.2017.02.015
  11. Idel’chik, I. E. (1960). Handbook of hydraulic resistance (3rd edition). Washington, 517. https://doi.org/AEC-tr- 6630
  12. Imran, M., Usman, M., Park, B. S., & Lee, D. H. (2016). Volumetric expanders for low grade heat and waste heat recovery applications. Renewable and Sustainable Energy Reviews, 57, 1090–1109. https://doi.org/10.1016/j.rser.2015.12.139
  13. Kanaś, P., Jedlikowski, A., & Anisimov, S. (2019). The influence of geometrical parameters on heat and mass transfer processes in rotary heat exchangers. SN Applied Sciences, 1(6), 1–16. https://doi.org/10.1007/s42452-019-0540-2
  14. Lemort, V., Declaye, S., & Quoilin, S. (2012). Experimental characterization of a hermeti scroll expander for use in a micro-scale Rankine cycle. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226(1), 126–136. https://doi.org/10.1177/0957650911413840
  15. Lemort, Vincent, Quoilin, S., Cuevas, C., & Lebrun, J. (2009). Testing and modeling a scroll expander integrated into an Organic Rankine Cycle. Applied Thermal Engineering, 29(14–15), 3094–3102. https://doi.org/10.1016/j.applthermaleng.2009.04.013
  16. Oralli, E., Tarique, M. A., Zamfirescu, C., & Dincer, I. (2011). A study on scroll compressor conversion into expander for Rankine cycles. International Journal of Low-Carbon Technologies, 6(3), 200–206. https://doi.org/10.1093/ijlct/ctr008
  17. Panesar, A. S. (2016). An innovative organic Rankine cycle approach for high temperature applications. Energy, 115(March), 1436–1450. https://doi.org/10.1016/j.energy.2016.05.135
  18. Panesar, A. S. (2017). An innovative Organic Rankine Cycle system for integrated cooling and heat recovery. Applied Energy, 186, 396–407. https://doi.org/10.1016/j.apenergy.2016.03.011
  19. Pikra, G., & Rohmah, N. (2019). Comparison of single and double stage regenerative organic Rankine cycle for medium grade heat source through energy and exergy estimation. International Journal of Renewable Energy Development, 8(2), 141–148. https://doi.org/10.14710/ijred.8.2.141-148
  20. Qyyum, M. A., Qadeer, K., Lee, S., & Lee, M. (2018). Innovative propane-nitrogen two-phase expander refrigeration cycle for energy-efficient and low-global warming potential LNG production. Applied Thermal Engineering, 139(April), 157–165. https://doi.org/10.1016/j.applthermaleng.2018.04.105
  21. Saghlatoun, S., Zhuge, W., & Zhang, Y. (2014). Review of Expander Selection for Small-Scale Organic Rankine Cycle. Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting FEDSM2014 August 3-7, 2014, Chicago, Illinois, USA. https://doi.org/10.1115/fedsm2014-21904
  22. Sánta, R. (2012). The Analysis of Two-Phase Condensation Heat Transfer Models Based on the Comparison of the Boundary Condition. Acta Polytechnica Hungarica, 9(6), 167–180
  23. Shah, M. M. (2009). An Improved and Extended General Correlation for Heat Transfer During Condensation. Hvac&R Research, 15(September 2009), 37–41. https://doi.org/10.1080/10789669.2009.10390871
  24. Tchanche, B. F., Lambrinos, G., Frangoudakis, A., & Papadakis, G. (2011). Low-grade heat conversion into power using organic Rankine cycles - A review of various applications. Renewable and Sustainable Energy Reviews, 15(8), 3963–3979. https://doi.org/10.1016/j.rser.2011.07.024
  25. Vasuthevan, H., & Brümmer, A. (2016). Thermodynamic Modeling of Screw Expander in a Trilateral Flash Cycle. 23rd International Compressor Engineering Conference

Last update:

  1. Enhancing Energy Efficiency of Cumene Production Through Reactor Output Recycling Modification in a Heat Exchanger

    Finishia Sutjahjo, Lathifa Medri, Syarafina Alyani, Cindy Leviona Budhy. Journal of Chemical Engineering Research Progress, 1 (1), 2024. doi: 10.9767/jcerp.20100
  2. Numerical simulation for transverse migration of finite-size clean bubbles in homogeneous shear turbulence

    Minh Quang Chau, Xuan Phuong Nguyen, Hung Chien Do, Thi Thai Le. PROCEEDINGS OF THE 2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MANUFACTURING, MATERIALS AND TECHNOLOGIES, 2292 , 2020. doi: 10.1063/5.0030627
  3. Combination of solar with organic Rankine cycle as a potential solution for clean energy production

    Van Nhanh Nguyen, Nguyen Dang Khoa Pham, Xuan Quang Duong, Viet Dung Tran, Minh Tuan Pham, Sakthivel Rajamohan, Xuan Tuan Cao, Thanh Hai Truong. Sustainable Energy Technologies and Assessments, 57 , 2023. doi: 10.1016/j.seta.2023.103161
  4. Two-Phase Volumetric Expanders: A Review of the State-of-the-Art

    Xander van Heule, Michel De Paepe, Steven Lecompte. Energies, 15 (14), 2022. doi: 10.3390/en15144991

Last update: 2024-12-24 03:22:32

  1. Numerical simulation for transverse migration of finite-size clean bubbles in homogeneous shear turbulence

    Minh Quang Chau, Xuan Phuong Nguyen, Hung Chien Do, Thi Thai Le. PROCEEDINGS OF THE 2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MANUFACTURING, MATERIALS AND TECHNOLOGIES, 2292 , 2020. doi: 10.1063/5.0030627