skip to main content

Bio-oil synthesis from cassava pulp via hydrothermal liquefaction: Effects of catalysts and operating conditions

Department of Mechanical Engineering, Faculty of Engineering, Ubon Ratchathani University, 85 Sathonlamark Road, Warin Chamrap District, Ubon Ratchathani Province, Thailand, 34190, Thailand

Received: 17 Apr 2020; Revised: 28 May 2020; Accepted: 30 May 2020; Available online: 6 Jun 2020; Published: 15 Oct 2020.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2020 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE) under

Citation Format:

The influence of catalysts and operating conditions on the conversion and yield of bio-crude oil from CP via the hydrothermal liquefaction technique (HTL) were studied. HTL is commonly used to convert CP to bio-crude oil (BCO). Three independent factors—reaction temperatures (250–350 °C), reaction times (30–90 min), and CP concentrations (5–20 wt.%)—were investigated. Proximate analysis showed that CP comprises 84.61% volatile matter and 13.59% fixed carbon. The ultimate analysis demonstrated that CP has carbon and oxygen levels of 44.86% and 46.91%, respectively. Thermogravimetric analysis showed that CP begins to decompose at temperatures between 250–350 °C. The results show that KOH is the most suitable catalyst because it provides the highest BCO yield when compared to other catalysts under the same operating conditions. We found that the ideal operating conditions for maximizing BCO performance are 250 °C, pressure of 17.0 MPa, 90 min, 5 wt.%. Under these conditions, Fourier transforms infrared analysis showed that the most abundant chemical bonds found in BCO were CH3-O, CH3-C, and CH3. The findings of the CHNS analysis showed that BCO has an H/C ratio of 2.25, similar to that of petroleum and bio-diesel. Results from a gas chromatograph-mass spectrometer indicate that a fatty acid group is the main component of BCO. 

Fulltext View|Download
Keywords: Cassava pulp; Hydrothermal liquefaction; Bio—crude oil; Bio-oil synthesis; Response surface methodology

Article Metrics:

  1. Abnisa, F., and Wan Daud, W. M. A. (2015). Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire. Energy Conversion and Management. 99, 334-345, DOI: 10.1016/j.enconman.2015.04.030
  2. Anastasakis, K., and Ross, A. B. (2011). Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresource Technology. 102(7), 4876-4883, DOI: 10.1016/j.biortech.2011.01.031
  3. Babu, B. V. (2008). Biomass pyrolysis: a state-of-the-art review. Biofuels, Bioproducts and Biorefining. 2(5), 393-414, DOI: 10.1002/bbb.92
  4. Barbanera, M., Pelosi, C., Taddei, A. R., and Cotana, F. (2018). Optimization of bio-oil production from solid digestate by microwave-assisted liquefaction. Energy Conversion and Management. 171, 1263-1272, DOI: 10.1016/j.enconman.2018.06.066
  5. Basu, P. (2010). Biomass gasification and pyrolysis : practical design and theory Massachusetts, USA Academic Press is an imprint of Elsevier
  6. Biller, P., and Ross, A. B. (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology. 102(1), 215-225, DOI: 10.1016/j.biortech.2010.06.028
  7. Brown, R. C. (2011). Thermochemical processing of biomass : conversion into fuels, chemicals and power. Oxford, Wiley-Blackwell
  8. Charmongkolpradit, S., and Luampon, R. (2017). Study of Thin Layer Drying Model for Cassava Pulp. Energy Procedia. 138, 354-359, DOI: 10.1016/j.egypro.2017.10.138
  9. Chavalparit, O., and Ongwandee, M. (2009). Clean technology for the tapioca starch industry in Thailand. Journal of Cleaner Production. 17(2), 105-110, DOI: 10.1016/j.jclepro.2008.03.001
  10. Chen, Y., Wu, Y., Zhang, P., Hua, D., Yang, M., Li, C., Chen, Z., and Liu, J. (2012). Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol–water. Bioresource Technology. 124, 190-198, DOI: 10.1016/j.biortech.2012.08.013
  11. Christensen, P. R., Mørup, A. J., Mamakhel, A., Glasius, M., Becker, J., and Iversen, B. B. (2014). Effects of heterogeneous catalyst in hydrothermal liquefaction of dried distillers grains with solubles. Fuel. 123, 158-166, DOI: 10.1016/j.fuel.2014.01.037
  12. Duan, P., and Savage, P. E. (2011). Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research. 50(1), 52-61, DOI: 10.1021/ie100758s
  13. FAOSTAT Statistical Database, S. D. 2019. Food and Agriculture Organization of the United Nations (FAO).
  14. Glanpracha, N., and Annachhatre, A. P. (2016). Anaerobic co-digestion of cyanide containing cassava pulp with pig manure. Bioresource Technology. 214, 112-121, DOI: 10.1016/j.biortech.2016.04.079
  15. Hakalin, N. L. S., Molina-Gutiérrez, M., Prieto, A., and Martínez, M. J. (2018). Optimization of lipase-catalyzed synthesis of β-sitostanol esters by response surface methodology. Food Chemistry. 261, 139-148, DOI: 10.1016/j.foodchem.2018.04.031
  16. Inoue, S., Dote, Y., Sawayama, S., Minowa, T., Ogi, T., and Yokoyama, S.-y. (1994). Analysis of oil derived from liquefaction of Botryococcus Braunii. Biomass and Bioenergy. 6(4), 269-274, DOI: 10.1016/0961-9534(94)90066-3
  17. Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., and Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis —A Technological Review. Energies. 5(12), 4952-5001. DOI: 10.3390/en5124952
  18. Jiang, J., and Savage, P. E. (2017). Influence of process conditions and interventions on metals content in biocrude from hydrothermal liquefaction of microalgae. Algal Research. 26, 131-134, DOI: 10.1016/j.algal.2017.07.012
  19. Karagöz, S., Bhaskar, T., Muto, A., and Sakata, Y. (2006). Hydrothermal upgrading of biomass: Effect of K2CO3 concentration and biomass/water ratio on products distribution. Bioresource Technology. 97(1), 90-98, DOI: 10.1016/j.biortech.2005.02.051
  20. Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y., Oshiki, T., and Kishimoto, T. (2005). Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chemical Engineering Journal. 108(1), 127-137, DOI: 10.1016/j.cej.2005.01.007
  21. Latchubugata, C. S., Kondapaneni, R. V., Patluri, K. K., Virendra, U., and Vedantam, S. (2018). Kinetics and optimization studies using Response Surface Methodology in biodiesel production using heterogeneous catalyst. Chemical Engineering Research and Design. 135, 129-139, DOI: 10.1016/j.cherd.2018.05.022
  22. Loubna, H., Balistrou, M., Burnens, G., Loubar, K., and Tazerout, M. (2016). Hydrothermal liquefaction of oil mill wastewater for bio-oil production in subcritical conditions. Bioresource Technology. 218, 9-17, DOI: 10.1016/j.biortech.2016.06.054
  23. Matsui, T.-o., Nishihara, A., Ueda, C., Ohtsuki, M., Ikenaga, N.-o., and Suzuki, T. (1997). Liquefaction of micro-algae with iron catalyst. Fuel. 76(11), 1043-1048, DOI: 10.1016/S0016-2361(97)00120-8
  24. Minowa, T., Yokoyama, S.-y., Kishimoto, M., and Okakura, T. (1995). Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel. 74(12), 1735-1738, DOI: 10.1016/0016-2361(95)80001-X
  25. Minowa, T., Zhen, F., and Ogi, T. (1997). Liquefaction of Cellulose in Hot Compressed Water using Sodium Carbonate: Products Distribution at Different Reaction Temperatures
  26. Mohan, D., Pittman, C. U., and Steele, P. H. (2006). Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels. 20(3), 848-889, DOI: 10.1021/ef0502397
  27. Pandey, A., Soccol, C. R., Nigam, P., Soccol, V. T., Vandenberghe, L. P. S., and Mohan, R. (2000). Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresource Technology. 74(1), 81-87, DOI: 10.1016/S0960-8524(99)00143-1
  28. Panichnumsin, P., Nopharatana, A., Ahring, B., and Chaiprasert, P. 2006. Anaerobic Co-digestion of Cassava Pulp and Pig Manure: Effects of Waste Ratio and Inoculum-substrate Ratio The 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006), Bangkok, Thailand
  29. Pattiya, A. (2011). Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor. Bioresource Technology. 102(2), 1959-1967, DOI: 10.1016/j.biortech.2010.08.117
  30. Pedersen, T. H., Jasiūnas, L., Casamassima, L., Singh, S., Jensen, T., and Rosendahl, L. A. (2015). Synergetic hydrothermal co-liquefaction of crude glycerol and aspen wood. Energy Conversion and Management. 106, 886-891, DOI: 10.1016/j.enconman.2015.10.017
  31. Samnuknit, W., Boontawan, P., and Boontawan, A. (2017). Efficient Process Development for Cellulosic Ethanol Fermentation from Cassava Pulp
  32. Shakya, R., Whelen, J., Adhikari, S., Mahadevan, R., and Neupane, S. (2015). Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae. Algal Research. 12, 80-90, DOI: 10.1016/j.algal.2015.08.006
  33. Sornkade, P., Atong, D., and Sricharoenchaikul, V. (2015). Conversion of cassava rhizome using an in-situ catalytic drop tube reactor for fuel gas generation. Renewable Energy. 79, 38-44, DOI: 10.1016/j.renene.2014.07.043
  34. Srisaikham, S., Isobe, N., and Suksombat, W. (2018). Effects of dietary levels of fresh cassava pulp in dairy cattle diet on productive performance and keeping quality of raw milk. Songklanakarin Journal of Science and Technology. 40(2), 278-289
  35. Sulaiman, N. S., Hashim, R., Mohamad Amini, M. H., Danish, M., and Sulaiman, O. (2018). Optimization of activated carbon preparation from cassava stem using response surface methodology on surface area and yield. Journal of Cleaner Production. 198, 1422-1430, DOI: 10.1016/j.jclepro.2018.07.061
  36. Suzuki, A., Nakamura, T., Yokoyama, S.-Y., Ogi, T., and Koguchi, K. (1988). Conversion of Sewage Sludge to Heavy Oil By Direct Thermochemical Liquefaction. Journal of Chemical Engineering of Japan. 21(3), 288-293, DOI: 10.1252/jcej.21.288
  37. Tungal, R., and Shende, R. (2014). Hydrothermal liquefaction of pinewood (Pinus ponderosa) for H2, biocrude and bio-oil generation. Applied Energy, 134, 401-412, DOI: 10.1016/j.apenergy.2014.07.060
  38. Van Krevelen, D. W. (1950). Graphical-statistical method for the study of structure and reaction processes of coal. Fuel. 29, 269-284
  39. Yang, W., Li, X., Liu, S., and Feng, L. (2014). Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts. Energy Conversion and Management. 87, 938-945, DOI: 10.1016/j.enconman.2014.08.004

Last update:

  1. Prediction of Aboveground Biomass of Three Cassava (Manihot esculenta) Genotypes Using a Terrestrial Laser Scanner

    Tyler Adams, Richard Bruton, Henry Ruiz, Ilse Barrios-Perez, Michael G. Selvaraj, Dirk B. Hays. Remote Sensing, 13 (7), 2021. doi: 10.3390/rs13071272
  2. A Critical Review of Data Science Applications in Resource Recovery and Carbon Capture from Organic Waste

    Mohammed T. Zaki, Lewis S. Rowles, Donald A. Adjeroh, Kevin D. Orner. ACS ES&T Engineering, 3 (10), 2023. doi: 10.1021/acsestengg.3c00043
  3. COVID-19 and industrial waste mitigation via thermochemical technologies towards a circular economy: A state-of-the-art review

    Charles B. Felix, Aristotle T. Ubando, Wei-Hsin Chen, Vahabodin Goodarzi, Veeramuthu Ashokkumar. Journal of Hazardous Materials, 423 , 2022. doi: 10.1016/j.jhazmat.2021.127215
  4. FeCl3-supported solvothermal liquefaction of Miscanthus in methanol

    Ying Su, Bingfeng Guo, Ursel Hornung, Nicolaus Dahmen. Energy, 258 , 2022. doi: 10.1016/

Last update: 2024-05-17 23:18:45

No citation recorded.