Bio-oil synthesis from cassava pulp via hydrothermal liquefaction: Effects of catalysts and operating conditions

License URL: http://creativecommons.org/licenses/by-sa/4.0
The influence of catalysts and operating conditions on the conversion and yield of bio-crude oil from CP via the hydrothermal liquefaction technique (HTL) were studied. HTL is commonly used to convert CP to bio-crude oil (BCO). Three independent factors—reaction temperatures (250–350 °C), reaction times (30–90 min), and CP concentrations (5–20 wt.%)—were investigated. Proximate analysis showed that CP comprises 84.61% volatile matter and 13.59% fixed carbon. The ultimate analysis demonstrated that CP has carbon and oxygen levels of 44.86% and 46.91%, respectively. Thermogravimetric analysis showed that CP begins to decompose at temperatures between 250–350 °C. The results show that KOH is the most suitable catalyst because it provides the highest BCO yield when compared to other catalysts under the same operating conditions. We found that the ideal operating conditions for maximizing BCO performance are 250 °C, pressure of 17.0 MPa, 90 min, 5 wt.%. Under these conditions, Fourier transforms infrared analysis showed that the most abundant chemical bonds found in BCO were CH3-O, CH3-C, and CH3. The findings of the CHNS analysis showed that BCO has an H/C ratio of 2.25, similar to that of petroleum and bio-diesel. Results from a gas chromatograph-mass spectrometer indicate that a fatty acid group is the main component of BCO.
Article Metrics:
- Abnisa, F., and Wan Daud, W. M. A. (2015). Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire. Energy Conversion and Management. 99, 334-345, DOI: 10.1016/j.enconman.2015.04.030
- Anastasakis, K., and Ross, A. B. (2011). Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresource Technology. 102(7), 4876-4883, DOI: 10.1016/j.biortech.2011.01.031
- Babu, B. V. (2008). Biomass pyrolysis: a state-of-the-art review. Biofuels, Bioproducts and Biorefining. 2(5), 393-414, DOI: 10.1002/bbb.92
- Barbanera, M., Pelosi, C., Taddei, A. R., and Cotana, F. (2018). Optimization of bio-oil production from solid digestate by microwave-assisted liquefaction. Energy Conversion and Management. 171, 1263-1272, DOI: 10.1016/j.enconman.2018.06.066
- Basu, P. (2010). Biomass gasification and pyrolysis : practical design and theory Massachusetts, USA Academic Press is an imprint of Elsevier
- Biller, P., and Ross, A. B. (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology. 102(1), 215-225, DOI: 10.1016/j.biortech.2010.06.028
- Brown, R. C. (2011). Thermochemical processing of biomass : conversion into fuels, chemicals and power. Oxford, Wiley-Blackwell
- Charmongkolpradit, S., and Luampon, R. (2017). Study of Thin Layer Drying Model for Cassava Pulp. Energy Procedia. 138, 354-359, DOI: 10.1016/j.egypro.2017.10.138
- Chavalparit, O., and Ongwandee, M. (2009). Clean technology for the tapioca starch industry in Thailand. Journal of Cleaner Production. 17(2), 105-110, DOI: 10.1016/j.jclepro.2008.03.001
- Chen, Y., Wu, Y., Zhang, P., Hua, D., Yang, M., Li, C., Chen, Z., and Liu, J. (2012). Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol–water. Bioresource Technology. 124, 190-198, DOI: 10.1016/j.biortech.2012.08.013
- Christensen, P. R., Mørup, A. J., Mamakhel, A., Glasius, M., Becker, J., and Iversen, B. B. (2014). Effects of heterogeneous catalyst in hydrothermal liquefaction of dried distillers grains with solubles. Fuel. 123, 158-166, DOI: 10.1016/j.fuel.2014.01.037
- Duan, P., and Savage, P. E. (2011). Hydrothermal Liquefaction of a Microalga with Heterogeneous Catalysts. Industrial & Engineering Chemistry Research. 50(1), 52-61, DOI: 10.1021/ie100758s
- FAOSTAT Statistical Database, S. D. 2019. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/faostat/en/#data/QC
- Glanpracha, N., and Annachhatre, A. P. (2016). Anaerobic co-digestion of cyanide containing cassava pulp with pig manure. Bioresource Technology. 214, 112-121, DOI: 10.1016/j.biortech.2016.04.079
- Hakalin, N. L. S., Molina-Gutiérrez, M., Prieto, A., and Martínez, M. J. (2018). Optimization of lipase-catalyzed synthesis of β-sitostanol esters by response surface methodology. Food Chemistry. 261, 139-148, DOI: 10.1016/j.foodchem.2018.04.031
- Inoue, S., Dote, Y., Sawayama, S., Minowa, T., Ogi, T., and Yokoyama, S.-y. (1994). Analysis of oil derived from liquefaction of Botryococcus Braunii. Biomass and Bioenergy. 6(4), 269-274, DOI: 10.1016/0961-9534(94)90066-3
- Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., and Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis —A Technological Review. Energies. 5(12), 4952-5001. DOI: 10.3390/en5124952
- Jiang, J., and Savage, P. E. (2017). Influence of process conditions and interventions on metals content in biocrude from hydrothermal liquefaction of microalgae. Algal Research. 26, 131-134, DOI: 10.1016/j.algal.2017.07.012
- Karagöz, S., Bhaskar, T., Muto, A., and Sakata, Y. (2006). Hydrothermal upgrading of biomass: Effect of K2CO3 concentration and biomass/water ratio on products distribution. Bioresource Technology. 97(1), 90-98, DOI: 10.1016/j.biortech.2005.02.051
- Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y., Oshiki, T., and Kishimoto, T. (2005). Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chemical Engineering Journal. 108(1), 127-137, DOI: 10.1016/j.cej.2005.01.007
- Latchubugata, C. S., Kondapaneni, R. V., Patluri, K. K., Virendra, U., and Vedantam, S. (2018). Kinetics and optimization studies using Response Surface Methodology in biodiesel production using heterogeneous catalyst. Chemical Engineering Research and Design. 135, 129-139, DOI: 10.1016/j.cherd.2018.05.022
- Loubna, H., Balistrou, M., Burnens, G., Loubar, K., and Tazerout, M. (2016). Hydrothermal liquefaction of oil mill wastewater for bio-oil production in subcritical conditions. Bioresource Technology. 218, 9-17, DOI: 10.1016/j.biortech.2016.06.054
- Matsui, T.-o., Nishihara, A., Ueda, C., Ohtsuki, M., Ikenaga, N.-o., and Suzuki, T. (1997). Liquefaction of micro-algae with iron catalyst. Fuel. 76(11), 1043-1048, DOI: 10.1016/S0016-2361(97)00120-8
- Minowa, T., Yokoyama, S.-y., Kishimoto, M., and Okakura, T. (1995). Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel. 74(12), 1735-1738, DOI: 10.1016/0016-2361(95)80001-X
- Minowa, T., Zhen, F., and Ogi, T. (1997). Liquefaction of Cellulose in Hot Compressed Water using Sodium Carbonate: Products Distribution at Different Reaction Temperatures
- Mohan, D., Pittman, C. U., and Steele, P. H. (2006). Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels. 20(3), 848-889, DOI: 10.1021/ef0502397
- Pandey, A., Soccol, C. R., Nigam, P., Soccol, V. T., Vandenberghe, L. P. S., and Mohan, R. (2000). Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresource Technology. 74(1), 81-87, DOI: 10.1016/S0960-8524(99)00143-1
- Panichnumsin, P., Nopharatana, A., Ahring, B., and Chaiprasert, P. 2006. Anaerobic Co-digestion of Cassava Pulp and Pig Manure: Effects of Waste Ratio and Inoculum-substrate Ratio The 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006), Bangkok, Thailand
- Pattiya, A. (2011). Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor. Bioresource Technology. 102(2), 1959-1967, DOI: 10.1016/j.biortech.2010.08.117
- Pedersen, T. H., Jasiūnas, L., Casamassima, L., Singh, S., Jensen, T., and Rosendahl, L. A. (2015). Synergetic hydrothermal co-liquefaction of crude glycerol and aspen wood. Energy Conversion and Management. 106, 886-891, DOI: 10.1016/j.enconman.2015.10.017
- Samnuknit, W., Boontawan, P., and Boontawan, A. (2017). Efficient Process Development for Cellulosic Ethanol Fermentation from Cassava Pulp
- Shakya, R., Whelen, J., Adhikari, S., Mahadevan, R., and Neupane, S. (2015). Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae. Algal Research. 12, 80-90, DOI: 10.1016/j.algal.2015.08.006
- Sornkade, P., Atong, D., and Sricharoenchaikul, V. (2015). Conversion of cassava rhizome using an in-situ catalytic drop tube reactor for fuel gas generation. Renewable Energy. 79, 38-44, DOI: 10.1016/j.renene.2014.07.043
- Srisaikham, S., Isobe, N., and Suksombat, W. (2018). Effects of dietary levels of fresh cassava pulp in dairy cattle diet on productive performance and keeping quality of raw milk. Songklanakarin Journal of Science and Technology. 40(2), 278-289
- Sulaiman, N. S., Hashim, R., Mohamad Amini, M. H., Danish, M., and Sulaiman, O. (2018). Optimization of activated carbon preparation from cassava stem using response surface methodology on surface area and yield. Journal of Cleaner Production. 198, 1422-1430, DOI: 10.1016/j.jclepro.2018.07.061
- Suzuki, A., Nakamura, T., Yokoyama, S.-Y., Ogi, T., and Koguchi, K. (1988). Conversion of Sewage Sludge to Heavy Oil By Direct Thermochemical Liquefaction. Journal of Chemical Engineering of Japan. 21(3), 288-293, DOI: 10.1252/jcej.21.288
- Tungal, R., and Shende, R. (2014). Hydrothermal liquefaction of pinewood (Pinus ponderosa) for H2, biocrude and bio-oil generation. Applied Energy, 134, 401-412, DOI: 10.1016/j.apenergy.2014.07.060
- Van Krevelen, D. W. (1950). Graphical-statistical method for the study of structure and reaction processes of coal. Fuel. 29, 269-284
- Yang, W., Li, X., Liu, S., and Feng, L. (2014). Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts. Energy Conversion and Management. 87, 938-945, DOI: 10.1016/j.enconman.2014.08.004
Last update: 2021-02-25 19:57:19
Last update: 2021-02-25 19:57:20
License URL: http://creativecommons.org/licenses/by-sa/4.0
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.