Melting Behavior of Phase Change Material in a Solar Vertical Thermal Energy Storage with Variable Length Fins added on the Heat Transfer Tube Surfaces

*Ramalingam Senthil orcid scopus  -  SRM Institute of Science and Technology, Chennai, India, India
Aditya Patel  -  Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai, India., India
Rohan Rao  -  Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai, India., India
Sahil Ganeriwal  -  Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai, India., India
Received: 3 Apr 2020; Revised: 15 Jun 2020; Accepted: 25 Jun 2020; Published: 15 Oct 2020; Available online: 26 Jun 2020.
Open Access Copyright (c) 2020 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This paper investigates the melting behaviour of phase change material (PCM) in a vertical thermal energy storage system with provision of thin rectangular fins of uniform and variable lengths on the heat transfer tube surfaces. The selected PCM and heat transfer fluid (HTF) are paraffin wax and water, respectively. The HTF is passed through the helically coiled copper tube of 10 mm diameter to melt the PCM. The time required to complete the melting of PCM in the system with fins is found to be five hours, whereas for the system without fins it is five hours and forty minutes, for the same conditions of constant water temperature of about 70°C and flow rate of 0.02 kg/s. HTF tube with fins is observed to be more effective with a 13.33% faster rate of melting when compared to that of the HTF tube without fins. Such a fast charging process will be helpful in storing maximum energy within a short period/duration of time shorter duration in for solar thermal and heat recovery applications during lean production times. ©2020. CBIORE-IJRED. All rights reserved

Keywords: Thermal energy storage; phase change materials; charging process; heat transfer fluid; paraffin wax; energy storage capacity

Article Metrics:

  1. Aly, K. A., El-Lathy, A. R., & Fouad, M. A. (2019). Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins. J. Energy Storage, 24, 100785. https://doi.org/10.1016/j.est.2019.100785
  2. Chen, C. Q., Diao, Y. H., Zhao, Y. H., Ji, W. H., Wang, Z. Y., & Liang, L. (2019). Thermal performance of a thermal-storage unit by using a multichannel flat tube and rectangular fins. Appl. Energy, 250, 1280–1291. https://doi.org/10.1016/j.apenergy.2019.05.095
  3. Deng, S., Nie, C., Jiang, H., & Ye, W.-B. (2019). Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage. Int. J. Heat Mass Transf., 130, 532–544. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.126
  4. Gürtürk, M., Kok, B. (2020). A new approach in the design of heat transfer fin for melting and solidification of PCM Int. J. Heat Mass Transf., 153, 119671. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119671
  5. Joybari, M. M., Haghighat, F., Seddegh, S., & Yuan, Y. (2019). Simultaneous charging and discharging of phase change materials: Development of correlation for liquid fraction. Sol. Energy, 188, 788–798. https://doi.org/10.1016/j.solener.2019.06.051
  6. Mahdi, M. S., Hasan, A. F., Mahood, H. B., Campbell, A. N., Khadom, A. A., Karim, A. M. A., & Sharif, A. O. (2019). Numerical study and experimental validation of the effects of orientation and configuration on melting in a latent heat thermal storage unit. J. Energy Storage, 23, 456–468. https://doi.org/10.1016/j.est.2019.04.013
  7. Mahdi, M. S., Mahood, H. B., Hasan, A. F., Khadom, A. A., & Campbell, A. N. (2019). Numerical Study on the Effect of the Location of the Phase Change Material in a Concentric Double Pipe Latent Heat Thermal Energy Storage Unit. Thermal Science and Engineering Progress. https://doi.org/10.1016/j.tsep.2019.03.007
  8. Mehta, D. S., Solanki, K., Rathod, M. K., & Banerjee, J. (2019). Thermal performance of shell and tube latent heat storage unit: Comparative assessment of horizontal and vertical orientation. J. Energy Storage, 23, 344–362. https://doi.org/10.1016/j.est.2019.03.007
  9. Moffat, R.J. (1988). Describing the Uncertainties in Experimental Results. Exp. Therm. Fluid Sci., 1, pp. 3-17
  10. Kline, S., & McClintock, F. (1953). Describing Uncertainties in Single-Sample Experiments. Mech. Eng., 75, 3-8
  11. Senthil, R. (2019). Effect of uniform and variable fin height on charging and discharging of PCM in a horizontal cylindrical thermal storage. Therm. Sci., 22, 3B, 1981-1988, 2019. DOI: https://doi.org/10.2298/TSCI170709239S
  12. Senthil, R. (2019). Effect of position of heat transfer fluid tube on melting of phase change material in cylindrical thermal energy storage. Energy Sources Part A. https://doi.org/10.1080/15567036.2019.1649751
  13. Shahsavar, A., Shaham, A., & Talebizadehsardari, P. (2019). Wavy channels triple-tube LHS unit with sinusoidal variable wavelength in charging/discharging mechanism. Int. Commun. Heat Mass Transf., 107, 93–105. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.012
  14. Sodhi, G. S., Jaiswal, A. K., Vigneshwaran, K., & Muthukumar, P. (2019). Investigation of charging and discharging characteristics of a horizontal conical shell and tube latent thermal energy storage device. Energy Convers. Manage. 188, 381–397. https://doi.org/10.1016/j.enconman.2019.03.022
  15. Vogel, J., & Johnson, M. (2019). Natural convection during melting in vertical finned tube latent thermal energy storage systems. Appl. Energy, 246, 38–52. https://doi.org/10.1016/j.apenergy.2019.04.011
  16. Wang, Y., Yu, K., & Ling, X. (2019). Experimental and modeling study on thermal performance of hydrated salt latent heat thermal energy storage system. Energy Convers. Manage. 198, 111796. https://doi.org/10.1016/j.enconman.2019.111796
  17. Yadav, A.K., Donepudi, T., Siddani, B.S. (2020). Numerical and experimental investigation of melting characteristics of phase change material-RT58. Therm. Sci. Eng. Prog., 17,100378. https://doi.org/10.1016/j.tsep.2019.100378
  18. Yagci, O. K., Avci, M., & Aydin, O. (2019). Melting and solidification of PCM in a tube-in-shell unit: Effect of fin edge lengths’ ratio. J. Energy Storage, 24, 100802. https://doi.org/10.1016/j.est.2019.100802

Last update: 2021-02-26 07:28:12

  1. Effect of conical coiled heat transfer fluid tube on charging of phase-change material in a vertical shell and coil type cylindrical thermal energy storage

    Banumathi Munuswamy Swami Punniakodi, Ramalingam Senthil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020. doi: 10.1080/15567036.2020.1819476

Last update: 2021-02-26 07:28:13

  1. Effect of conical coiled heat transfer fluid tube on charging of phase-change material in a vertical shell and coil type cylindrical thermal energy storage

    Banumathi Munuswamy Swami Punniakodi, Ramalingam Senthil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020. doi: 10.1080/15567036.2020.1819476