skip to main content

Melting Behavior of Phase Change Material in a Solar Vertical Thermal Energy Storage with Variable Length Fins added on the Heat Transfer Tube Surfaces

1SRM Institute of Science and Technology, Chennai, India, India

2Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai, India., India

Received: 3 Apr 2020; Revised: 15 Jun 2020; Accepted: 25 Jun 2020; Available online: 26 Jun 2020; Published: 15 Oct 2020.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2020 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This paper investigates the melting behaviour of phase change material (PCM) in a vertical thermal energy storage system with provision of thin rectangular fins of uniform and variable lengths on the heat transfer tube surfaces. The selected PCM and heat transfer fluid (HTF) are paraffin wax and water, respectively. The HTF is passed through the helically coiled copper tube of 10 mm diameter to melt the PCM. The time required to complete the melting of PCM in the system with fins is found to be five hours, whereas for the system without fins it is five hours and forty minutes, for the same conditions of constant water temperature of about 70°C and flow rate of 0.02 kg/s. HTF tube with fins is observed to be more effective with a 13.33% faster rate of melting when compared to that of the HTF tube without fins. Such a fast charging process will be helpful in storing maximum energy within a short period/duration of time shorter duration in for solar thermal and heat recovery applications during lean production times. ©2020. CBIORE-IJRED. All rights reserved

Fulltext View|Download
Keywords: Thermal energy storage; phase change materials; charging process; heat transfer fluid; paraffin wax; energy storage capacity

Article Metrics:

  1. Aly, K. A., El-Lathy, A. R., & Fouad, M. A. (2019). Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins. J. Energy Storage, 24, 100785. https://doi.org/10.1016/j.est.2019.100785
  2. Chen, C. Q., Diao, Y. H., Zhao, Y. H., Ji, W. H., Wang, Z. Y., & Liang, L. (2019). Thermal performance of a thermal-storage unit by using a multichannel flat tube and rectangular fins. Appl. Energy, 250, 1280–1291. https://doi.org/10.1016/j.apenergy.2019.05.095
  3. Deng, S., Nie, C., Jiang, H., & Ye, W.-B. (2019). Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage. Int. J. Heat Mass Transf., 130, 532–544. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.126
  4. Gürtürk, M., Kok, B. (2020). A new approach in the design of heat transfer fin for melting and solidification of PCM Int. J. Heat Mass Transf., 153, 119671. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119671
  5. Joybari, M. M., Haghighat, F., Seddegh, S., & Yuan, Y. (2019). Simultaneous charging and discharging of phase change materials: Development of correlation for liquid fraction. Sol. Energy, 188, 788–798. https://doi.org/10.1016/j.solener.2019.06.051
  6. Mahdi, M. S., Hasan, A. F., Mahood, H. B., Campbell, A. N., Khadom, A. A., Karim, A. M. A., & Sharif, A. O. (2019). Numerical study and experimental validation of the effects of orientation and configuration on melting in a latent heat thermal storage unit. J. Energy Storage, 23, 456–468. https://doi.org/10.1016/j.est.2019.04.013
  7. Mahdi, M. S., Mahood, H. B., Hasan, A. F., Khadom, A. A., & Campbell, A. N. (2019). Numerical Study on the Effect of the Location of the Phase Change Material in a Concentric Double Pipe Latent Heat Thermal Energy Storage Unit. Thermal Science and Engineering Progress. https://doi.org/10.1016/j.tsep.2019.03.007
  8. Mehta, D. S., Solanki, K., Rathod, M. K., & Banerjee, J. (2019). Thermal performance of shell and tube latent heat storage unit: Comparative assessment of horizontal and vertical orientation. J. Energy Storage, 23, 344–362. https://doi.org/10.1016/j.est.2019.03.007
  9. Moffat, R.J. (1988). Describing the Uncertainties in Experimental Results. Exp. Therm. Fluid Sci., 1, pp. 3-17
  10. Kline, S., & McClintock, F. (1953). Describing Uncertainties in Single-Sample Experiments. Mech. Eng., 75, 3-8
  11. Senthil, R. (2019). Effect of uniform and variable fin height on charging and discharging of PCM in a horizontal cylindrical thermal storage. Therm. Sci., 22, 3B, 1981-1988, 2019. DOI: https://doi.org/10.2298/TSCI170709239S
  12. Senthil, R. (2019). Effect of position of heat transfer fluid tube on melting of phase change material in cylindrical thermal energy storage. Energy Sources Part A. https://doi.org/10.1080/15567036.2019.1649751
  13. Shahsavar, A., Shaham, A., & Talebizadehsardari, P. (2019). Wavy channels triple-tube LHS unit with sinusoidal variable wavelength in charging/discharging mechanism. Int. Commun. Heat Mass Transf., 107, 93–105. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.012
  14. Sodhi, G. S., Jaiswal, A. K., Vigneshwaran, K., & Muthukumar, P. (2019). Investigation of charging and discharging characteristics of a horizontal conical shell and tube latent thermal energy storage device. Energy Convers. Manage. 188, 381–397. https://doi.org/10.1016/j.enconman.2019.03.022
  15. Vogel, J., & Johnson, M. (2019). Natural convection during melting in vertical finned tube latent thermal energy storage systems. Appl. Energy, 246, 38–52. https://doi.org/10.1016/j.apenergy.2019.04.011
  16. Wang, Y., Yu, K., & Ling, X. (2019). Experimental and modeling study on thermal performance of hydrated salt latent heat thermal energy storage system. Energy Convers. Manage. 198, 111796. https://doi.org/10.1016/j.enconman.2019.111796
  17. Yadav, A.K., Donepudi, T., Siddani, B.S. (2020). Numerical and experimental investigation of melting characteristics of phase change material-RT58. Therm. Sci. Eng. Prog., 17,100378. https://doi.org/10.1016/j.tsep.2019.100378
  18. Yagci, O. K., Avci, M., & Aydin, O. (2019). Melting and solidification of PCM in a tube-in-shell unit: Effect of fin edge lengths’ ratio. J. Energy Storage, 24, 100802. https://doi.org/10.1016/j.est.2019.100802

Last update:

  1. A comprehensive review of latent heat energy storage for various applications: an alternate to store solar thermal energy

    Devendra Raut, Arunendra K. Tiwari, Vilas R. Kalamkar. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44 (10), 2022. doi: 10.1007/s40430-022-03740-3
  2. Experimental study on melting enhancement of phase change material in a vertical cylindrical latent heat storage using a short concentric helical heat transfer tube

    Banumathi Munuswamy Swami Punniakodi, Ramalingam Senthil. Journal of Energy Storage, 41 , 2021. doi: 10.1016/j.est.2021.102879
  3. Effect of conical coiled heat transfer fluid tube on charging of phase-change material in a vertical shell and coil type cylindrical thermal energy storage

    Banumathi Munuswamy Swami Punniakodi, Ramalingam Senthil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44 (4), 2022. doi: 10.1080/15567036.2020.1819476
  4. A review on container geometry and orientations of phase change materials for solar thermal systems

    Banumathi Munuswamy Swami Punniakodi, Ramalingam Senthil. Journal of Energy Storage, 36 , 2021. doi: 10.1016/j.est.2021.102452
  5. A review on latent heat energy storage for solar thermal water-lithium bromide vapor absorption refrigeration system

    Devendra Raut, Vilas R. Kalamkar. Journal of Energy Storage, 55 , 2022. doi: 10.1016/j.est.2022.105828
  6. Evaluation of Melting Mechanism and Natural Convection Effect in a Triplex Tube Heat Storage System with a Novel Fin Arrangement

    Farqad Najim, Sami Kaplan, Hayder Mohammed, Anmar Dulaimi, Azher Abed, Raed Ibrahem, Fadhil Al-Qrimli, Mustafa Mahmoud, Jan Awrejcewicz, Witold Pawłowski. Sustainability, 14 (17), 2022. doi: 10.3390/su141710982
  7. Effect of Fluid Flow Direction on Charging of Multitube Thermal Energy Storage for Flat Plate Solar Collectors

    Ramalingam Senthil. International Journal of Renewable Energy Development, 10 (2), 2021. doi: 10.14710/ijred.2021.34931
  8. Heat transfer enhancement of concentrated solar absorber using hollow cylindrical fins filled with phase change material

    S. Bharath Subramaniam, Ramalingam Senthil. International Journal of Hydrogen Energy, 46 (43), 2021. doi: 10.1016/j.ijhydene.2021.04.061
  9. Phase Change Material of (100-200) C: Review and Taxonomy

    Mushtaq A. Al-Furaiji, A.V. Baranenko, V.Y. Zakharova, O. S. Malinina. IOP Conference Series: Earth and Environmental Science, 1029 (1), 2022. doi: 10.1088/1755-1315/1029/1/012014
  10. Experimental evaluation of shell geometry impact on thermal and exergy performance in helical coiled tube heat exchanger with phase change material

    Farshid Narges Moghadam, Ehsan Izadpanah, Younes Shekari, Yasser Amini. Journal of Energy Storage, 83 , 2024. doi: 10.1016/j.est.2024.110790
  11. Effect of geometrical and operational parameters on paraffin's melting performance in helical coiled latent heat storage for solar application: A numerical study

    Devendra Raut, Saurabh Lanjewar, Vilas R. Kalamkar. International Journal of Thermal Sciences, 176 , 2022. doi: 10.1016/j.ijthermalsci.2022.107509
  12. Experimental study on charging and discharging behavior of PCM encapsulations for thermal energy storage of concentrating solar power system

    Obada Omar Issa, V. Thirunavukkarasu. Journal of Energy Storage, 85 , 2024. doi: 10.1016/j.est.2024.111071

Last update: 2024-11-05 07:24:04

  1. Effect of conical coiled heat transfer fluid tube on charging of phase-change material in a vertical shell and coil type cylindrical thermal energy storage

    Banumathi Munuswamy Swami Punniakodi, Ramalingam Senthil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44 (4), 2022. doi: 10.1080/15567036.2020.1819476
  2. Effect of Fluid Flow Direction on Charging of Multitube Thermal Energy Storage for Flat Plate Solar Collectors

    Ramalingam Senthil. International Journal of Renewable Energy Development, 10 (2), 2021. doi: 10.14710/ijred.2021.34931