Performance and Techno-Economic Analysis of Scaling-up A Single-Chamber Yeast Microbial Fuel Cell as Dissolved Oxygen Biosensor

*Marcelinus Christwardana orcid scopus  -  Department of Chemical Engineering, Institut Teknologi Indonesia, Indonesia
Linda Aliffia Yoshi  -  Department of Chemical Engineering, Institut Teknologi Indonesia, Indonesia
Received: 7 May 2020; Revised: 5 Jul 2020; Accepted: 1 Aug 2020; Published: 15 Oct 2020; Available online: 16 Aug 2020.
Open Access License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Article Info
Section: Special Issue on Microbial - Enzymatic Fuel Cells
Language: EN
Statistics: 516 187
Abstract

The Microbial fuel cells (MFCs) are electrochemical devices that can be utilized as biosensors, specifically Dissolved Oxygen (DO) biosensors. In this research, performance and techno-economic of MFC-based DO biosensors with two sizes, small and large, were evaluated and analysed to determine whether it is more economical to use a small or large reactor. MFC-based DO biosensors were also applied to an irrigation canal. When MFC immersed into distilled water with several variations of DO, the correlation between DO and current density produced equation with R2 values around 0.9989 and 0.9979 for SYMFC and LYMFC, respectively. The power density for SYMFC and LYMFC was 3.48 and 10.89 mW/m2, respectively, in DO 6. Higher power densities are correlated with the electrode surface area, especially the larger cathodic surface area. When applied to the irrigation canal, DO values measured using SYMFC and LYMFC have errors of around 3.39 and 4.42%, respectively, when compared to DO values measured using DO meters. LYMFC requires a capital cost of around $ 234.22 or 2.57 times higher than SYMFC, although it generates almost similar cost per mW/m2, $ 21.51 and $ 26.23 for LYMFC and SYMFC, respectively. The results concluded that yeast MFC -based DO biosensors with smaller sizes can achieve more economical compared to larger sizes.

Keywords: Environmental Biosensor; Single-chamber MFC; Economic Analysis; Cost-to-energy Ratio; Saccharomyces cerevisiae

Article Metrics:

  1. Ansa-Asare, O. D., Marr, I. L., & Cresser, M. S. (2000). Evaluation of modelled and measured patterns of dissolved oxygen in a freshwater lake as an indicator of the presence of biodegradable organic pollution. Water research, 34(4), 1079-1088. https://doi.org/10.1016/S0043-1354(99)00239-0
  2. Badihi‐Mossberg, M., Buchner, V., & Rishpon, J. (2007). Electrochemical biosensors for pollutants in the environment. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 19(19‐20), 2015-2028. https://doi.org/10.1002/elan.200703946
  3. Bond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 295(5554), 483-485. https://doi.org/10.1126/science.1066771
  4. Cheng, S., & Logan, B. E. (2011). Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresource technology, 102(6), 4468-4473. https://doi.org/10.1016/j.biortech.2010.12.104
  5. Christwardana, M., Frattini, D., Accardo, G., Yoon, S. P., & Kwon, Y. (2018). Optimization of glucose concentration and glucose/yeast ratio in yeast microbial fuel cell using response surface methodology approach. Journal of Power Sources, 402, 402-412. https://doi.org/10.1016/j.jpowsour.2018.09.068
  6. Christwardana, M., Frattini, D., Accardo, G., Yoon, S. P., & Kwon, Y. (2018). Effects of methylene blue and methyl red mediators on performance of yeast based microbial fuel cells adopting polyethylenimine coated carbon felt as anode. Journal of Power Sources, 396, 1-11. https://doi.org/10.1016/j.jpowsour.2018.06.005
  7. Christwardana, M., Frattini, D., Accardo, G., Yoon, S. P., & Kwon, Y. (2018). Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst. Applied Energy, 222, 369-382. https://doi.org/10.1016/j.apenergy.2018.03.193
  8. Christwardana, M., Frattini, D., Duarte, K. D., Accardo, G., & Kwon, Y. (2019). Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells. Applied energy, 238, 239-248. https://doi.org/10.1016/j.apenergy.2019.01.078
  9. Dennison, M. J., & Turner, A. P. (1995). Biosensors for environmental monitoring. Biotechnology advances, 13(1), 1-12. https://doi.org/10.1016/0734-9750(94)00020-D
  10. Duarte, K. D., Frattini, D., & Kwon, Y. (2019). High performance yeast-based microbial fuel cells by surfactant-mediated gold nanoparticles grown atop a carbon felt anode. Applied Energy, 256, 113912. https://doi.org/10.1016/j.apenergy.2019.113912
  11. Fan, Y., Han, S. K., & Liu, H. (2012). Improved performance of CEA microbial fuel cells with increased reactor size. Energy & Environmental Science, 5(8), 8273-8280. https://doi.org/10.1039/c2ee21964f
  12. Hadiyanto, H., Christwardana, M., & da Costa, C. (2019). Electrogenic and biomass production capabilities of a Microalgae-Microbial fuel cell (MMFC) system using tapioca wastewater and Spirulina platensis for COD reduction. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-12. https://doi.org/10.1080/15567036.2019.1668085
  13. Hubenova, Y., & Mitov, M. (2015). Extracellular electron transfer in yeast-based biofuel cells: A review. Bioelectrochemistry, 106, 177-185. https://doi.org/10.1016/j.bioelechem.2015.04.001
  14. Karube, I., Nomura, Y., & Arikawa, Y. (1995). Biosensors for environmental control. TrAC Trends in Analytical Chemistry, 14(7), 295-299. https://doi.org/10.1016/0165-9936(95)97055-6
  15. Lanas, V., Ahn, Y., & Logan, B. E. (2014). Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode. Journal of Power Sources, 247, 228-234. https://doi.org/10.1016/j.jpowsour.2013.08.110
  16. Logan, B. E., & Regan, J. M. (2006). Microbial fuel cells-challenges and applications. Environ. Sci. Technol. 40, 17, 5172-5180 https://doi.org/10.1021/es0627592
  17. Lowy, D. A., Tender, L. M., Zeikus, J. G., Park, D. H., & Lovley, D. R. (2006). Harvesting energy from the marine sediment-water interface II: kinetic activity of anode materials. Biosensors and Bioelectronics, 21(11), 2058-2063. https://doi.org/10.1016/j.bios.2006.01.033
  18. Markfort, C. D., & Hondzo, M. (2009). Dissolved oxygen measurements in aquatic environments: the effects of changing temperature and pressure on three sensor technologies. Journal of Environmental quality, 38(4), 1766-1774. https://doi.org/10.2134/jeq2008.0197
  19. Oh, S. E., & Logan, B. E. (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied microbiology and biotechnology, 70(2), 162-169. https://doi.org/10.1007/s00253-005-0066-y
  20. Oh, S. E., Kim, J. R., Joo, J. H., & Logan, B. E. (2009). Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water science and technology, 60(5), 1311-1317. https://doi.org/10.2166/wst.2009.444
  21. Powell, E. E., Evitts, R. W., Hill, G. A., & Bolster, J. C. (2011). A microbial fuel cell with a photosynthetic microalgae cathodic half cell coupled to a yeast anodic half cell. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(5), 440-448. https://doi.org/10.1080/15567030903096931
  22. Rabaey, K., Van de Sompel, K., Maignien, L., Boon, N., Aelterman, P., Clauwaert, P., ... & Lens, P. (2006). Microbial fuel cells for sulfide removal. Environmental science & technology, 40(17), 5218-5224. https://doi.org/10.1021/es060382u
  23. Rago, L., Cristiani, P., Villa, F., Zecchin, S., Colombo, A., Cavalca, L., & Schievano, A. (2017). Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells. Bioelectrochemistry, 116, 39-51. https://doi.org/10.1016/j.bioelechem.2017.04.001
  24. Rawson, D. M., Willmer, A. J., & Turner, A. P. (1989). Whole-cell biosensors for environmental monitoring. Biosensors, 4(5), 299-311. https://doi.org/10.1016/0265-928X(89)80011-2
  25. Reimers, C. E., Tender, L. M., Fertig, S., & Wang, W. (2001). Harvesting energy from the marine sediment− water interface. Environmental science & technology, 35(1), 192-195. https://doi.org/10.1021/es001223s
  26. Rezaei, F., Richard, T. L., Brennan, R. A., & Logan, B. E. (2007). Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environmental science & technology, 41(11), 4053-4058. https://doi.org/10.1021/es070426e
  27. Rismani-Yazdi, H., Carver, S. M., Christy, A. D., & Tuovinen, O. H. (2008). Cathodic limitations in microbial fuel cells: an overview. Journal of Power Sources, 180(2), 683-694. https://doi.org/10.1016/j.jpowsour.2008.02.074
  28. Rossi, R., Cavina, M., & Setti, L. (2016). Characterization of electron transfer mechanism in mediated microbial fuel cell by entrapped electron mediator in saccharomyces cerevisiae. Chemical Engineering Transactions, 49, 559-564.
  29. Rossi, R., Fedrigucci, A., & Setti, L. (2015). Characterization of electron mediated microbial fuel cell by Saccharomyces cerevisiae. Chemical Engineering Transactions, 43. 337-342
  30. Schneider, G., Kovács, T., Rákhely, G., & Czeller, M. (2016). Biosensoric potential of microbial fuel cells. Applied microbiology and biotechnology, 100(16), 7001-7009. https://doi.org/10.1007/s00253-016-7707-1
  31. Shantaram, A., Beyenal, H., Veluchamy, R. R. A., & Lewandowski, Z. (2005). Wireless sensors powered by microbial fuel cells. Environmental science & technology, 39(13), 5037-5042. https://doi.org/10.1021/es0480668
  32. Shen, Y., Wang, M., Chang, I. S., & Ng, H. Y. (2013). Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu (II). Bioresource technology, 136, 707-710. https://doi.org/10.1016/j.biortech.2013.02.069
  33. Tender, L. M., Reimers, C. E., Stecher, H. A., Holmes, D. E., Bond, D. R., Lowy, D. A., ... & Lovley, D. R. (2002). Harnessing microbially generated power on the seafloor. Nature biotechnology, 20(8), 821-825. https://doi.org/10.1038/nbt716
  34. Tront, J. M., Fortner, J. D., Plötze, M., Hughes, J. B., & Puzrin, A. M. (2008). Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosensors and Bioelectronics, 24(4), 586-590. https://doi.org/10.1016/j.bios.2008.06.006
  35. Vishwanathan, A. S., Rao, G., & Sai, S. S. S. (2013). A novel minimally invasive method for monitoring oxygen in microbial fuel cells. Biotechnology letters, 35(4), 553-558. https://doi.org/10.1007/s10529-012-1109-y
  36. Wetzel, R. G. (2001). Limnology: lake and river ecosystems. gulf professional publishing.
  37. Yang, H., Zhou, M., Liu, M., Yang, W., & Gu, T. (2015). Microbial fuel cells for biosensor applications. Biotechnology letters, 37(12), 2357-2364. https://doi.org/10.1007/s10529-015-1929-7
  38. Zhang, Y., & Angelidaki, I. (2011). Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability. Biotechnology and bioengineering, 108(10), 2339-2347. https://doi.org/10.1002/bit.23204
  39. Zhang, Y., Olias, L. G., Kongjan, P., & Angelidaki, I. (2011). Submersible microbial fuel cell for electricity production from sewage sludge. Water Science and Technology, 64(1), 50-55. https://doi.org/10.2166/wst.2011.678

No citation recorded.