skip to main content

Tidal Current Energy Resources Assessment in the Patinti Strait, Indonesia

1Marine Geological Research and Development Center, Ministry of Energy and Mineral Resources, Indonesia

2Department of Oceanography, Bandung Institute of Technology, Indonesia

3Géosciences Océan UMR CNRS 6538, Université Bretagne Sud, 56017 Vannes Cedex, France

4 South-East Asia Carbonate Research Laboratory, Universiti Teknologi Petronas, Perak, Malaysia

5 Department of Coastal Engineering, Bandung Institute of Technology, Indonesia

View all affiliations
Received: 14 Dec 2020; Revised: 15 Feb 2021; Accepted: 24 Feb 2021; Published: 1 Aug 2021; Available online: 1 Mar 2021.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Indonesia is currently intensively developing its renewable energy resource and targets at least 23% by 2025. As an archipelago country, Indonesia has the potential to benefit from its abundant renewable energy resources from its offshore regions. However, the short tidal range of mixed semi-diurnal and the suitable tidal turbine capacity may hinder marine renewable energy development in Indonesian waters. This paper presents higher-order hydrodynamic numerical models to provide spatial information for tidal current resource assessment of the Patinti Strait. The present study applied the hydrographic and oceanographic method to produce input of the numerical model. Based on the selected simulation analysis, the highest current speed could be identified around Sabatang and Saleh Kecil Island with up to 2.5 m/s in P1 and 1.7 m/s in P4. Besides, the operational hours for the two observation points are 69% and 74.5%, respectively. The results indicate that this location is of prime interest for tidal turbine implementation as an energy source, for medium capacity (300 kW) and high capacity (1 MW).

Fulltext View|Download
Keywords: Tidal current; renewable energy; resource assessment; numerical model; Indonesia

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
Statistics:
  1. Adcock, T.A.A., Draper, S., & Nishino, T. (2015). Tidal Power Generation – A Review of Hydrodynamic Modelling. in: Proceeding of the Institution of Mechanical Engineers. Part A: Journal of Power and Energy, 229, 755–711. doi: 10.1177/0957650915570349
  2. Ajiwibowo, H., Pratama, M.B., & Wurjanto, A. (2017). Assessment of Tidal Current Power Potency in Kelabat Bay, Indonesia. International Journal of Engineering and Technology, 9(4), 3100–3110. doi: 10.21817/ijet/2017/v9i4/170904089
  3. Blunden, L.S., & Bahaj, A.S. (2007). Effects of tidal energy extraction at Portland Bill, southern UK predicted from a numerical model. Proceedings of the 7th European Wave and Tidal Energy Conference
  4. Blunden, L.S., Bahaj, A.S., & Aziz, N.S. (2013). Tidal current power for Indonesia? An initial resource estimation for the Alas Strait. Renewable Energy, 49, 137–142. doi: 10.1016/j.renene.2012.01.046
  5. BP (2019) BP Statistical Review of World Energy, 68th ed. British Petroleum
  6. Bryden, I.G., Couch, S.J., Owen, A, & Melville, G. (2007). Tidal current resource assessment. in: Proceeding of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 221(2), 125–135. doi: 10.1243/09576509JPE238
  7. De Groot, N (2012) Tidal power in the Klabat bay, Indonesia. MSc Thesis Report, Delft University of Technology, Delft
  8. Devine-Wright, P. (2011). Place attachment and public acceptance of renewable energy: A tidal energy case study. Journal Environmental Psychology, 31, 336–343. doi: 10.1016/j.jenvp.2011.07.001
  9. Dhanak, M.R., Duerr, A.E.S., & Van Zwieten, J.H. (2016). Marine hydrokinetic energy resource assessment. Springer Handbook of Ocean Engineering, 1099–1116. doi: 10.1007/978-3-319-16649-0_44.Accessedon11April2019
  10. DHI. (2012). MIKE 21 & MIKE 3 FLOW MODEL FM: Hydrodynamic and Transport Module Scientific Documentation. DHI, Horsholm
  11. Draper, S., Adcock, T.A.A., Borthwick, A.G.L., & Houlsby, G.T. (2014). Estimate of the tidal stream power resource of the Pentland Firth. Renewable Energy, 63, 650–657. doi: 10.1016/j.renene.2013.10.015
  12. Ebuchi N., & Hanawa K. (1995). Comparison of Surface Current Variations Observed by TOPEX Altimeter with TOLEX-ADCP Data. Journal of Oceanography, 51, 351–362. doi: 10.1007/BF02285171
  13. Evans, G.P. (1993). A Framework for Marine and Estuarine Model Specification in the UK. Research Report FR0374, Foundation for Water Research, Buckinghamshire
  14. Fraenkel, P.L. (2006). Marine current turbines : pioneering the development of marine kinetic energy converters. Journal Power and Energy, 221, 159–169. doi: 10.1243/09576509JPE307
  15. Firdaus, A.M., Houlsby, G.T., & Adcock, T.A.A. (2020). Tidal energy resource in Larantuka Strait, Indonesia. Energy, 173(2), 81–92. doi: 10.1680/jener.19.00042
  16. Firdaus, A.M., Houlsby, G.T., & Adcock, T.A.A. (2019). Resource estimates in Lombok Straits, Indonesia. Proceedings of the 13th European Wave and Tidal Energy Conference
  17. Gordon, A.L. (2005). Oceanography of the Indonesian seas and their through flow. Oceanography, 18, 14–27. doi: 10.5670/oceanog.2005.01
  18. Haslett, J.R., Garcia-Llorente, M., Harrison, P.A., Li, S., & Berry, PM. (2016). Offshore renewable energy and nature conservation: the case of marine tidal turbines in Northern Ireland. Biodiversity Conservation, 27, 1619–1638. doi: 10.1007/s10531-016-1268-6
  19. Hasegawa, D., Sheng, J., Greenberg, D.A., & Thompson, K.R. (2011). Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model. Ocean Dynamics, 61, 1845–1868. doi: 10.1007/s10236-011-0481-9
  20. Hastie, G., Gillespie, D., Gordon. J., Macaulay. J., McConnell, B., & Sparling, C. (2014). Tracking Technologies for Quantifying Marine Mammal Interactions with Tidal Turbines: Pitfalls and Possibilities, In: Shield. M., Payne A. Marine Renewable Energy Technology and Environment Interactactions, 127–139. doi: 10.1007/978-94-017-8002-5_10
  21. He, W., Xin, W., Bingzhen, W., Yang, B., & Peitao, W. (2017). Evaluation of tidal stream energy and its impacts on surrounding dynamics in the Eastern Region of Pingtan Island, China. Chinese Journal of Oceanology and Limnology, 35, 1319–1328. doi: 10.1007/s00343-017-0187-z
  22. Inger, R., Attrill, M.J., Bearhop, S., Broderick, A.C., James Grecian W., Hodgson D.J., Mills C., Sheehan E., Votier S.C., Witt., M.J, & Godley., B.J. (2009). Marine renewable energy: Potential benefits to biodiversity? An urgent call for research. Journal of Applied Ecology, 46, 1145–1153. doi: 10.1111/j.1365-2664.2009.01697.x
  23. Isobe, A., Kuramitsu, T., Nozaki, H., & Chang, P.H. (2007). Reliability of ADCP data detided with a Numerical Model on the East China Sea Shelf. Journal of Oceanography, 63, 135–141. doi: 10.1007/s10872-007-0011-z
  24. Johnson, T.R., Jansujwicz, J.S., & Zydlewski, G. (2013). Tidal Power Development in Maine: Stakeholder Identification and Perceptions of Engagement. Estuaries and Coasts, 38, 266–278. doi: 10.1007/s12237-013-9703-3
  25. Kementerian ESDM (2017) Peta Potensi Energi Arus Indonesia. Internal Report, Badan Litbang Energi dan Sumber Daya Mineral, Pusat Penelitian dan Pengembangan Geologi Kelautan, Bandung
  26. Lewis, M., Neill, S.P., Robins, P., Hashemi, M.R., & Ward, S. (2017). Characteristics of the velocity profile at tidal-stream energy sites. Renewable Energy, 114, 258–272. doi: 10.1016/j.renene.2017.03.096
  27. Lewis, M., Neill, S.P., Robins, P.E., & Hashemi, M.R., 2015. (2015) Resource assessment for future generations of tidal-stream energy arrays. Energy, 83, 403–415. doi: 10.1016/j.energy.2015.02.038
  28. Lim, X.L., & Lam, W.H. (2014). Public Acceptance of Marine Renewable Energy in Malaysia. Energy Policy, 65, 16–26. doi: 10.1016/j.enpol.2013.09.053
  29. Meyer, I., Reinecke, J., & Van Niekerk, J.L. (2014). Resource Assessment of the Agulhas Current for the Purpose of Marine Energy Extraction. In the 5th International Conference on Ocean Energy
  30. Ministry of Energy and Mineral Resources Republic of Indonesia (2018) Keputusan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 1772 K/20/MEM/2018. Kementerian Energi dan Sumber Daya Mineral, Republik Indonesia, Jakarta
  31. Mungar, S. (2014) Hydrodynamics of horizontal-axis tidal current turbines. MSc Thesis Report, Delft University of Technology, Delft
  32. Neill, S.P., Vögler, A., Goward-Brown, A.J., Baston, S., Lewis, M.J., Gillibrand, P.A., Waldman, S., & Woolf, D.K. (2017). The wave and tidal resource of Scotland. Renewable Energy, 114, 3–17. doi: 10.1016/j.renene.2017.03.027
  33. Neill, S.P., Litt, E.J., Couch, S.J., & Davies, A.G. (2009). The Impact of Marine Renewable Energy Extraction on Sediment Dynamics. Marine Renewable Energy, 34, 2803–2812. doi: 10.1016/j.renene.2009.06.015
  34. NOAA (2020) Climate at a Glance: Global Mapping. https://www.ncdc.noaa.gov/cag/. Accessed on 13 December 2020
  35. Novico, F., Astawa, I.N., Sinaga, A., & Ali, A. (2015). Seafloor Morphology Influences on Current Condition in a Sunda Strait Bridge Project Using Numerical Model. Bulletin of The Marine Geology, 30, 55–66. https://doi.org/10.32693/bomg.30.2.2015.75
  36. O’Brien, N., O’Donncha, F., & Ragnoli, E. (2015). A multiple layer modelling approach to investigate the effects of tidal turbine deployment. OCEANS 2015 - Genova: Discovering Sustainable Ocean Energy for a New World. doi: 10.1109/OCEANS-Genova.2015.7271496
  37. OES (2019) Annual report: An overview of ocean energy activities in 2019. Ocean Energy Systems
  38. Orhan, K., & Mayerle, R. (2020). Potential hydrodynamic impacts and performances of commercial-scale turbine arrays in the strait of Larantuka, Indonesia. Journal of Marine Science and Engineering, 8(3), 223. doi: 10.3390/jmse8030223
  39. Orhan, K., Mayerle, R., & Pandoe, W.W. (2015). Assesment of energy production potential from tidal stream currents in Indonesia. Energy Procedia, 76, 7–16. doi: 10.1016/j.egypro.2015.07.834
  40. Ortiz AP., Borthwick A.G.L., McNaughton J., & Avdis A. (2017). Characterisation of the tidal resource in Rathlin Sound. Renewable Energy, 114, Part A, 229–243. doi: 10.1016/j.renene.2017.04.026
  41. Osalusi, E., Side, J., & Harris, R. (2009). Structure of turbulent flow in EMEC’s tidal energy test site. International Communications in Heat Mass Transfer, 36, 422–431. doi: 10.1016/j.icheatmasstransfer.2009.02.010
  42. Pérez-Ortiz, A., Borthwick, A.G.L., McNaughton, J., & Avdis, A. (2017). Characterisation of the tidal resource in Rathlin Sound. Renewable Energy, 114, 229–243. doi: 10.1016/j.renene.2017.04.026
  43. Piotukh, V.B., Baranov, V.I., Kuklev, S.B., & Podymov, O.I. (2016). Results of test experiment comparing measurement data of three adjacent ADCP bottom stations. Oceanology, 56, 601–613. doi: 10.1134/S0001437016030164
  44. PLN (2018) 3.2 Sumber Energi Terbarukan: Rencana Usaha Penyediaan Tenaga Listrik PT. PLN (Persero) 2018-2027: III-5. Perusahaan Listrik Negara, Jakarta
  45. Pratama, M.B., Venugopal, V., Ajiwibowo, H., Ginting, J.W., & Novico, F. (2020). Modelling Tidal Flow Hydrodynamic of Sunda Strait, Indonesia. Indonesian Journal of Marine Sciences, 25, 165–172. doi: 10.14710/ik.ijms.25.4.165-172
  46. Pushidros TNI AL. (2011). Peta Kedalaman Halmahera – Pantai Barat Makian hingga Teluk Gane dan Pulau – pulau Bacan Skala 1: 200.000
  47. Rahmawati, S. (2017). Study on characteristic of tidal current energy and ocean environmental pollution at Indonesia Archipelago. PhD thesis, Hiroshima University, Hiroshima
  48. Ritchie, H., & Roser, M. (2017). CO₂ and Greenhouse Gas Emissions. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions. Accessed on 13 December 2020
  49. Roberts, A., Thomas, B., Sewell, P., Khan, Z., Balmain, S., & Gillman, J. (2016). Current tidal power technologies and their suitability for applications in coastal and marine areas. Journal of Ocean Engineering and Marine Energy, 2, 227–245. doi: 10.1007/s40722-016-0044-8
  50. Rourke, F.O., Boyle, F., & Reynolds, A. (2010). Tidal energy update 2009, Applied Energy 87, 398–409. doi: 10.1016/j.apenergy.2009.08.014
  51. Sudjono, E.H., Ilahude, D., Raharjo, P., Hermansyah, G.M., Wahib, A., Lugra, I.W., Yuningsih, A., Ningsih, N.S., Suprijo, T., & Ibrahim, A. (2014). Kajian teknis potensi sumber energi arus laut si Selat Molo, Boleng, Pantar, dan Riau. Internal Report, Kementerian Energi dan Sumber Daya Mineral, Badan Litbang Energi dan Sumber Daya Mineral, Pusat Penenlitian dan Pengembangan Geologi Kelautan, Bandung
  52. Susanto, R.D., Wei, Z., Adi, R.T., Fan, B., Li S., & Fang, G. (2013). Observations of the Karimata Strait throughflow from December 2007 to November 2008. Acta Oceanologica Sinicia, 32, 1–6. doi: 10.1007/s13131-013-0307-3
  53. Susilohadi., Sudjono, E.H., Yuinigsih, A., Yosi, M., Rachmat, B., Saputra, M.D., Ilahude, D., & Prabowo, H. (2014). Ringkasan pemetaan dan pemodelan energi arus laut di selat-selat berpotensi Indonesia 2006 - 2013. Internal Report, Kementerian Energi dan Sumber Daya Mineral, Badan Litbang Energi dan Sumber Daya Mineral, Pusat Penenlitian dan Pengembangan Geologi Kelautan, Bandung
  54. Waldman, S., Bastón, S., Nemalidinne, R., Chatzirodou, A., Venugopal, V., & Side, J. (2017). Implementation of tidal turbines in MIKE 3 and Delft3D models of Pentland Firth & Orkney Waters. Ocean and Coastal Management, 147, 21–36. doi: 10.1016/j.ocecoaman.2017.04.015
  55. Weatherall, P., Marks, K.M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J.E., Rovere, M., Chayes, D., Ferrini, V., & Wigley, R. (2015). A new digital bathymetric model of the world’s oceans. Earth and Space Sciences, 2, 331–345. doi: 10.1002/2015EA000107
  56. Woolf, D.K., Easton, M.C., Bowyer, P.A., & Mcllvenny, J. (2014). The Physics and Hydrodynamic Setting of Marine Renewable Energy. Marine Renewable Energy Technology and Environmental Interactions, 5–20. doi: 10.1007/978-94-017-8002-5_2
  57. Wu, H., Yu, H., Ding, J., & Yuan, D. (2016). Modelling assessment of tidal current energy in the Qiongzhou Strait, China. Acta Oceanologic Sinicia, 35, 21–29. doi: 10.1007/s13131-016-0792-2
  58. Yu, Z., Zhang, J., Zhai, Y., Zhang, T., & Zheng, J. (2017). Numerical hydrodynamics study around the turbine array of tidal stream farm in Zhoushan, China. Journal of Ocean Univiversity of China, 16, 703–708. doi: 10.1007/s11802-017-3451-0
  59. Zatsepin, A.G., Piotouh, V.B., Korzh, A.O., Kukleva, O.N., & Soloviev, D.M. (2012). Variability of currents in the coastal zone of the Black Sea from long-term measurements with a bottom mounted ADCP. Oceanology, 52, 579–592. doi: 10.1134/S0001437012050177
  60. Zydlewski, G.B., Copping, A.E., & Redden, A.M. (2015). Special Issue: Renewable Ocean Energy Development and the Environment. Estuaries and Coasts, 38, 156–158. doi: 10.1007/s12237-014-9922-2

Last update:

No citation recorded.

Last update:

No citation recorded.