Impact of Module Degradation on the Viability of On-Grid Photovoltaic Systems in Mediterranean Climate: The Case of Shymkent Airport

Zhalgas Smagulov  -  Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kazakhstan
Adil Anapiya  -  Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kazakhstan
Dinara Dikhanbayeva  -  Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kazakhstan
*Luis Rojas-Solorzano orcid scopus  -  Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kazakhstan
Received: 24 Sep 2020; Revised: 4 Nov 2020; Accepted: 8 Nov 2020; Published: 1 Feb 2021; Available online: 11 Nov 2020.
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This paper presents the techno-economic feasibility analysis of an on-grid Photovoltaic Solar System (PVSS) subject to Mediterranean climate aging effects. The PVSS under study is considered installed on the roof of Shymkent airport, located in southern Kazakhstan. A PVSS performance degradation rate of 1.48%-per-annun was considered according to the Mediterranean climate prevailing in the location. A 25-year life-cycle cost analysis comparing the rated vs. de-rated on-grid PVSS led to a positive Net Present Value (NPV), a less than 9-year equity payback, and favorable internal rate of return (IRR) and Benefit-to-Cost (B-C) ratio in both conditions. However, the de-rated PVSS system underperformed in 16.2%, 43.5% and 20% the IRR, NPV and B-C ratio, respectively. The analysis demonstrates that despite the expected performance degradation associated to climatic aging, a convenient feed-in tariff (FIT) and attractive financial conditions, such as those present in Kazakhstan, conform a robust setting to promote on-grid PVSS in the country.
Keywords: Photovoltaic systems; PVSS degradation; Mediterranean climate; renewable energy; solar energy

Article Metrics:

  1. Aly, S. P., Ahzi, S. and Barth, N. (2019). Effect of physical and environmental factors on the performance of a photovoltaic panel. Solar Energy Materials and Solar Cells, 200, 109948. https://doi.org/10.1016/j.solmat.2019.109948
  2. Assamidanov, A., Nogerbek, N. and Rojas-Solórzano. L. (2018). Technical and economic prefeasibility analysis of residential solar PV system in South Kazakhstan. Exergy for A Better Environment and Improved Sustainability. Springer, Chap, 2, 783-792. https://doi.org/10.1007/978-3-319-62575-1_55
  3. Asian Development Bank. (2017). Guidelines for Estimating Greenhouse Gas Emissions of Asian Development Bank Projects. 1-35
  4. Bogdanski, N., W. Herrmann, F. Reil, M. Köhl, K.-.A. Weiss, M. Heck. (2010). PV reliability (cluster II): results of a German four-year joint project: Part II, results of three years module weathering in four different climates. In: Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, 6-10. Valencia, Spain. https://doi.org/10.1117/12.859807
  5. Chianese, D., A. Realini, N. Cereghetti, A. Rezzonico, E. Bura, G. Friesen, A. Bernasconi. (2003). Analysis of weathered c-Si PV modules, in: IEEE (Ed.) Photovoltaic Energy Conversion. Proceedings of the 3rd World Conference on IEEE, 2922-2926. Osaka, Japan.
  6. DeGraaff, D., R. Lacerda, and Z. Campeau. (2011). Degradation mechanisms in Si module technologies observed in the field their analysis and statistics. NREL 2011 Photovoltaic Module Reliability Workshop, 20.
  7. DeVault, T. L., J. L. Belant, B. F. Blackwell, J. A. Martin, J. A. Schmidt, L. Wes Burger, and J. W. Patterson. (2012). Airports Offer Unrealized Potential for Alternative Energy Production. Environmental Management 49 (3): 517-522. doi: 10.1007/s00267-011-9803-4
  8. Federal Aviation Administration (FAA) (2020). [online] Available at:< https://www.faa.gov/airports/airport_safety/part139_cert/>
  9. Fargione, J., J. Hill, D. Tilman, S. Polasky, P. Hawthorne. (2008). Land clearng and the biofuel carbon debt. Science 319:1235-1238. https://doi.org/10.1126/science.1152747
  10. Halwachs, M., K. Berger, L. Maul, L. Neumaier, Y. Voronko, A. Mihaljevic, and C. Hirschl. (2017). Descriptive statistics on the climate related performance and reliability issues from global PV installations. Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, 1-3.
  11. ICAO. (2014). International Civil Aviation Organization (ICAO). Available at ICAO environmental report. Retrieved December 14, 2019 from https://www.icao.int/environmental-protection/pages/envreport13.aspx.
  12. Jain, A. K., M. Khanna, M. Erickson, H. Huang. (2010). An integrated biogeochemical and economic analysis of bioenergy crops in the Midwestern United States. GCB Bioenergy 2:217-234. https://doi.org/10.1111/j.1757-1707.2010.01041.x
  13. Jordan, D. C., and S. R. Kurtz. (2013). Photovoltaic degradation rates-an analytical review. Progress in photovoltaics: Research and Applications, 21(1): 12-29. https://doi.org/10.1002/pip.1182
  14. Kaplani, E. (2012). Detection of degradation effects in field-aged c-Si solar cells through IR thermography and digital image processing. International Journal of Photoenergy, 2012 (1): 1-11. https://doi.org/10.1155/2012/396792
  15. Kato, K. (2011). PVRessQ!: a research activity on reliability of PV systems from an user's viewpoint in Japan. Reliability of Photovoltaic Cells, Modules, Components, and Systems IV. Vol. 8112, 81120K. International Society for Optics and Photonics. https://doi.org/10.1117/12.896135
  16. Kellas, A. (2012). Utilizing the solar energy for power generation in Cyprus, 8th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2012), Cagliari, pp. 1-7, doi: 10.1049/cp.2012.2012.https://doi.org/10.1049/cp.2012.2012
  17. Kursiv - business news of Kazakhstan. (n.d.). Как в Казахстане удешевили энергию солнца и ветра [How the sun and wind energy became cheaper in Kazakhstan]. Accessed January 26, 2020. https://kursiv.kz/news/otraslevye-temy/2019-07/kak-v-kazakhstane-udeshevili-energiyu-solnca-i-vetra
  18. Liu, Z., M. L. Castillo, A. Youssef, J. G. Serdy, A. Watts, C. Schmid, and T. Buonassisi. (2019). Quantitative analysis of degradation mechanisms in 30-year-old PV modules. Solar Energy Materials and Solar Cells, 200, 110019. https://doi.org/10.1016/j.solmat.2019.110019
  19. Maish, A. B., C. Atcitty, S. Hester, D. Greenberg, D. Osborn, D. Collier, and M. Brine. (1997). Photovoltaic system reliability. Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997, 1049-1054. IEEE. https://doi.org/10.1109/PVSC.1997.654269
  20. Malvoni, M., A. Leggieri, G. Maggiotto, P. M. Congedo, and M. G. De Giorgi. (2017). Long term performance, losses and efficiency analysis of a 960 kWP photovoltaic system in the Mediterranean climate. Energy Conversion and Management, 145, 169-181. https://doi.org/10.1016/j.enconman.2017.04.075
  21. National Bank of Kazakhstan. (2019). Base interest rate of the NBK. Accessed November 1, 2019. https://nationalbank.kz/?docid=107&switch=english
  22. National Resources Canada. Clean Energy Project Analysis. RETScreen international (2004); 17-33. https://eclass.teicrete.gr/modules/document/file.php/PEGA-FV105/RETSCREEN_Textbook_PV.pdf
  23. Omazic, A., G. Oreski, M. Halwachs, G. C. Eder, C. Hirschl, L. Neumaier, and M. Erceg. (2019). Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review. Solar Energy Materials and Solar Cells, 192, 123-133. https://doi.org/10.1016/j.solmat.2018.12.027
  24. Ontustyk. (2019). О регионе [About a region]. СЭЗ «Оңтүстік», Официальный сайт Специальной экономической зоны «Оңтүстік», Шымкент, Специальные экономические зоны Казахстана. https://kazsez.com/en/about-region/
  25. Otyrar. (2018). Аэропорт Шымкента передан в управление города [Shymkent airport transferred to city management]. https://otyrar.kz/2018/11/aeroport-shymkenta-peredan-municipalitetu/
  26. Parnham, E., A. Whitehead, S. Pain, W. Brennan. (2017). Comparison of accelerated UV test methods with Florida exposure for photovoltaic backsheet materials EU PVSEC. Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition. Amsterdam.
  27. Peng, P., A. Hu, W. Zheng, P. Su, D. He, K.D. Oakes, A. Fu, R. Han, S.L. Lee, J. Tang, Y.N. Zhou. (2012). Microscopy study of snail trail phenomenon on photovoltaic modules. RSC Advances, 2 (30): 11359. https://doi.org/10.1039/c2ra22280a
  28. Plante, R. H. (2014). Solar Energy, Photovoltaics, and Domestic Hot Water: A Technical and Economic Guide for Project Planners, Builders, and Property Owners. Academic Press. https://doi.org/10.1016/B978-0-12-420155-2.00004-9
  29. Plante, J., S. Barrett, P. M. De Vita, and R. L. Miller. (2010). Technical guidance for evaluating selected solar technologies on airports. Federal Aviation Administration.
  30. Plecher, H. (2019). Kazakhstan: Inflation rate from 1994 to 2024. https://www.statista.com/statistics/436183/inflation-rate-in-kazakhstan/
  31. Realini, A. (2003). Mean Time before Failure of Photovoltaic Modules. Final Report (MTBF Project), Federal Office for Education and Science Tech. Rep., BBW 99.0579.
  32. Renewable Energy World. (2020). San Diego Airport Installs 2 MW/4 Mwh Storage System to Complement Existing PV Array - Renewable Energy World. [online] Available at: < https://www.renewableenergyworld.com/2019/06/27/san-diego-airport-installs-2-mw4-mwh-storage-system-to-complement-existing-pv-array/#gref>
  33. Report IEA-PVPS T13-01. (2013). Performance and reliability of photovoltaic systems: Subtask 3.2: review on failures of PV modules. IEA PVPS Task 13, External final draft report IEA-PVPS.
  34. Report IEA-PVPS T1-25. (2014). Trends 2014 in Photovoltaic Applications: Survey report of Selected IEA Countries between 1992 and 2013.
  35. Salameh, Z. (2014). Renewable energy system design.26. https:/doi.org/10.1049/cp.2012.2012
  36. Smith, R. M., D. C. Jordan, S. R. Kurtz. (2012). NREL, outdoor PV module degradation of current-voltage parameters: preprint. Proceedings of the World Renewable Energy Forum, Denver, Colorado.
  37. Snell, M. (1997). Cost-benefit analysis for engineers and planners. London: T. Telford. https://doi.org/10.1680/cba.25875
  38. Solar Reviews. n.d. How Much Do Solar Panels Cost. Accessed January 25, 2020. https://www.solarreviews.com/solar-panel-cost
  39. Sukumaran, S. and Sudhakar, K., (2017). Fully solar powered airport: A case study of Cochin International airport. Journal of Air Transport Management, 62, pp.176-188. https://doi.org/10.1016/j.jairtraman.2017.04.004
  40. Swart, J., R. Schoeman, and C. Pienaar. (2013). Ensuring sustainability of PV systems for a given climate region in South Africa. 2013 Africon. doi: 10.1109/afrcon.2013.6757638
  41. The World Bank. (2018). Electric power transmission and distribution losses (% of output). Accessed November 5, 2019. https://data.worldbank.org/indicator/eg.elc.loss.zs?most_recent_year_desc=false
  42. Vázquez, M., and I. Rey‐Stolle. (2008). Photovoltaic module reliability model based on field degradation studies. Progress in photovoltaics: Research and Applications, 16(5), 419-433. https://doi.org/10.1002/pip.825
  43. Wattsap.kz. n.d.. Солнечная панель 300 Вт (24В) [Solar panel 300 W]. Accessed January 25, 2020. https://wattsap.kz/p4832555-solnechnaya-batareya-300.html
  44. Weather-Atlas. Monthly weather forecast and Climate Shymkent, Kazakhstan. Accessed October 16, 2019.
  45. Wohlgemuth, J. H., and S. Kurtz. (2011). Reliability testing beyond qualification as a key component in photovoltaic's progress toward grid parity. 2011 International Reliability Physics Symposium, 5E-3. IEEE. https://doi.org/10.1109/IRPS.2011.5784534
  46. Yahya, A. M., Youm, I., Kader, A. (2011). Behavior and performance of a photovoltaic generator in real time. International Journal of Physical Sciences. 6(18):4361-4367.
  47. Yedidi, K., S. Tatapudi, J. Mallineni, B. Knisely, K. Kutiche, G. TamizhMani. (2014). Failure and degradation modes and rates of PV modules in a hot-dry climate: results after 16 years of field exposure. Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 3245-3247. https://doi.org/10.1109/PVSC.2014.6925626
  48. Zaihidee, F. M., S. Mekhilef, M. Seyedmahmoudian, and B.vHoran. (2016). Dust as an unalterable deteriorative factor affecting PV panel's efficiency: Why and how. Renewable and Sustainable Energy Reviews, 65, 1267-1278. https://doi.org/10.1016/j.rser.2016.06.068

Last update: 2021-01-19 11:59:09

No citation recorded.

Last update: 2021-01-19 11:59:11

No citation recorded.