1Department of Metallurgy, Faculty of Engineering, University of Sultan Ageng Tirtayasa, Cilegon Banten 42435, Indonesia
2Nanomaterials & Process Technology Laboratory, CoE Building 2 Floor 2, Faculty of Engineering, University of Sultan Ageng Tirtayasa, Cilegon Banten 42435, Indonesia
3Research Center for Geotechnology, National Research and Innovation Agency (BRIN), Jl. Sangkuriang, Kampus LIPI Bandung, Gd. 70, Bandung 40135, Indonesia
BibTex Citation Data :
@article{IJRED39298, author = {Erlina Yustanti and Abrar Muharman and Anggoro Mursito}, title = {The Effect of Wood Tar and Molasses Composition on Calorific Value and Compressive Strength in Bio-coke Briquetting}, journal = {International Journal of Renewable Energy Development}, volume = {11}, number = {3}, year = {2022}, keywords = {bio-coke; biomass; carbonization; charcoal; coking coal}, abstract = { Biomass-based materials have the potential to replace conventional cokes for blast furnaces in the steel manufacturing study. Biomass as a renewable energy source can reduce the consumption of coking coal. The current challenge is saving fossil energy and waste management. The steelmaking industry with environmentally friendly processes and high energy efficiency is expected today. Many researchers have partially developed biomass as an alternative renewable resource to replace fossil fuels. This study aimed to determine the effect of composition the blending ratio of wood tar and molasses as a binder on the calorific value and compressive strength of bio-coke. The carbonization of redwood waste to produce high-quality charcoal was carried out at 500 °C with a kiln rotation speed of 20 rpm and a slope of 5°. The resulting charcoal showed a promising result with a 23.87 MJ/kg calorific value. The carbonization process of the redwood increased the fixed carbon value by up to 130% and the calorific value by 40%. The second part of this study focuses on bio-coke production by blending coking coal with redwood charcoal at 90:10 wt%. The coking coal and the redwood charcoal particle sizes were 40 and 50 mesh, respectively. A 15 wt% binder was added to increase the compressive strength of the bio-coke. The binder composition ratios of molasses: wood tar were 15:0, (12.5:2.5), and 10:5 wt%. The briquette was pressed using a cylinder die with a height: diameter ratio of 2.7:5.0 cm, then compacted up to 20 MPa followed by heating at 1100 °C for four hours. The bio-coke with a binder composition of 2.5 wt% wood tar + 12.5 wt% molasses produced a compressive strength of up to 5.57 MPa with a sulfur content of 0.8 wt% and produced a calorific value of 31.25 MJ/kg with an ash content of 9.6%. The study showed that the bio-coke produced meets some requirements for steelmaking industry. }, pages = {600--607} doi = {10.14710/ijred.2022.39298}, url = {https://ejournal.undip.ac.id/index.php/ijred/article/view/39298} }
Refworks Citation Data :
Biomass-based materials have the potential to replace conventional cokes for blast furnaces in the steel manufacturing study. Biomass as a renewable energy source can reduce the consumption of coking coal. The current challenge is saving fossil energy and waste management. The steelmaking industry with environmentally friendly processes and high energy efficiency is expected today. Many researchers have partially developed biomass as an alternative renewable resource to replace fossil fuels. This study aimed to determine the effect of composition the blending ratio of wood tar and molasses as a binder on the calorific value and compressive strength of bio-coke. The carbonization of redwood waste to produce high-quality charcoal was carried out at 500 °C with a kiln rotation speed of 20 rpm and a slope of 5°. The resulting charcoal showed a promising result with a 23.87 MJ/kg calorific value. The carbonization process of the redwood increased the fixed carbon value by up to 130% and the calorific value by 40%. The second part of this study focuses on bio-coke production by blending coking coal with redwood charcoal at 90:10 wt%. The coking coal and the redwood charcoal particle sizes were 40 and 50 mesh, respectively. A 15 wt% binder was added to increase the compressive strength of the bio-coke. The binder composition ratios of molasses: wood tar were 15:0, (12.5:2.5), and 10:5 wt%. The briquette was pressed using a cylinder die with a height: diameter ratio of 2.7:5.0 cm, then compacted up to 20 MPa followed by heating at 1100 °C for four hours. The bio-coke with a binder composition of 2.5 wt% wood tar + 12.5 wt% molasses produced a compressive strength of up to 5.57 MPa with a sulfur content of 0.8 wt% and produced a calorific value of 31.25 MJ/kg with an ash content of 9.6%. The study showed that the bio-coke produced meets some requirements for steelmaking industry.
Article Metrics:
Last update:
Co-firing of coal and woody biomass under conditions of reburning technology with natural gas
Bio-coal and bio-coke production from agro residues
Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System
Last update: 2024-11-14 14:07:09
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.