Financial Measures for Electric Vehicles:Supporting the Integration of Renewable Energy in the Mobility Sector in Germany

*Stefan Bickert -  RWTH Aachen University, Laboratory for Machine Tools and Production Engineering (WZL), Chair of Production Management, 52056 Aachen, Germany
Published: 15 Feb 2014.
Open Access
Citation Format:
Article Info
Section: Original Research Article
Language: EN
Full Text:
Statistics: 587 1116
Abstract

Electric vehicles (EV) are able to support the transition of sectors towards sustainability. The operation of these vehicles with renewable energies saves local and global emissions. Furthermore, fluctuating renewable energies can be integrated in existing energy systems by using electric vehicles for grid services. Thus, implementation of advantages requires market establishment of electric vehicles. The article provides a review on potentials of market development by comparing and studying costs of electric and conventional vehicles as well as effects of financial measures on costs of EV. These cost comparisons are based on market data and predictions of cost developments for private consumers in Germany. Costs are analysed by an economic model of Total Cost of Ownership (TCO), aiming to display financial proportionality between vehicles in different years of acquisition (2010 to 2030). In a further step, external financial measures are analysed and integrated in the cost model as one possibility to enhance and secure the market introduction. Findings demonstrate that higher costs of acquisition of electric vehicles cannot be compensated by lower costs of operation. While mobility costs of conventionally vehicles stay constant or even increase during the considered years, mobility costs of electric vehicles significantly decrease especially in the upcoming years. In all cases mobility costs of electric vehicles exceed costs of conventional vehicles, but differences are reduced from 19€ct in 2010 to 3€ct in 2030. Cost decreases of the battery have high influence on the increasing financial comparability of EV. Concerning financial measures especially a differentiation of energy prices and a compensation of grid services can help to decrease total costs of EV and to manage a shift from fossil energy resources to electricity in the mobility sector. The existing tax exemption for EV compensates only a little fraction (about 6%) of the cost difference. This highlights the importance of research on incentive schemes to support market integration of EV and thereby the integration of renewable energies in the mobility sector. This integration is supported by the possibility of storing surplus fluctuating renewable energy in the batteries of EV.

Keywords
Electric Vehicle Taxation; Energy Prices; Grid Services, Incentive Schemes; Renewable Energy Development;Sustainable Mobility

Article Metrics:

  1. ADAC (2013) Autodatenbank. Retrieved 29.04.2013, from www.adac.de
  2. Anderman, M. (2009) Value Proposition Analysis for Li-Ion Batteries in Automotive Applications. 9th Advanced Automotive Battery Conference, Long Beach, USA.
  3. Arbeitsgemeinschaft Energiebilanzen e.V. (2009) Auswertungstabellen zur Energiebilanz für die Bundesrepublik Deutschland 1990 bis 2008. Stand: September 2009. Berlin, Köln.
  4. Biere, D., Dallinger, D., Wietschel, M. (2009) Ökonomische Analyse der Erstnutzer von Elektrofahrzeugen. Zeitschrift für Energiewirtschaft (ZfE) 2009(2), 173-181.
  5. Blesl, M., Bruchof, D., Hartmann, N., Özdemir, D., Fahl, U., Eltrop, L., Voß, A. (2009) Entwicklungsstand und Perspektiven der Elektromobilität. Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung, Stuttgart.
  6. BMWI (2011) Entwicklung von Energiepreisen und Preisindizes Deutschland, Energiedaten Tabelle 26. Berlin.
  7. Bundesministerium für Verkehr Bau und Stadtentwicklung (BMVBS), Ed. (2013). Verkehr in Zahlen 2012/2013. DVV Media Group GmbH, Hamburg.
  8. California Air Resources Board (CARB) (2000) Staff Report. 2000 Zero Emission Vehicle Program.
  9. de Haan, P., Mueller, M. G., Scholz, R. W. (2009) How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars--Part II: Forecasting effects of feebates based on energy-efficiency. Energy Policy 37(3), 1083-1094.
  10. Ernst, C.-S., Hackbarth, A., Madlener, R., Lunz, B., Sauer, D. U., Eckstein, L. (2011) Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany. Energy Policy 39(10), 5871-5882.
  11. ewi, gws, prognos (2010) Energieszenarien für ein Energiekonzept der Bundesregierung. Basel, Köln, Osnabrück.
  12. Funk, K., Rabl, A. (1999) Electric versus conventional vehicles: social costs and benefits in France. Transportation Research Part D: Transport and Environment 4(6), 397-411.
  13. Gawel, E. (2011) Kfz-Steuer-Reform und Klimaschutz. Wirtschaftsdienst 2011(2), 137-143.
  14. German Federal Government (2009) German Federal Government´s National Electromobility Development Plan. Berlin.
  15. Granovskii, M., Dincer, I., Rosen, M. A. (2006) Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. Journal of Power Sources 159(2), 1186-1193.
  16. Hackbarth, A., Schürmann, G., Madlener, R. (2009) Plug-in Hybridfahrzeuge: Wirtschaftlichkeit und Marktchancen verschiedener Geschäftsmodelle. Energiewirtschaftliche Tagesfragen (et) 59(7), 60-63.
  17. Heidingsfeld, C. (2012) Festelektrolyt-Batterien: Ableitung potentieller Einsatzgebiete auf Basis einer technischen und wirtschaftlichen Bewertung. STE Student Research Report 01/2012. Forschungszentrum Jülich, Institut für Energie- und Klimaforschung - Systemforschung und Technologische Entwicklung (IEK-STE), Jülich.
  18. Hennings, W., Linssen, J. (2010) Welche Netzdienstleistungen können Elektrofahrzeuge sinnvoll erbringen? VDE Kongress "E-Mobility" 2010, Leipzig.
  19. infas, DLR (2010) Mobilität in Deutschland 2008. Bonn, Berlin.
  20. Kley, F., Wietschel, M., Dallinger, D. (2010) Evaluation of European electric vehicle support schemes. Working Paper Sustainability and Innovation, No. S 7/2010. Fraunhofer Institute for Systems and Innovation Research (Fraunhofer ISI), Competence Center Energy Policy and Energy Systems, Karlsruhe.
  21. Lin, C., Wu, T., Ou, X., Zhang, Q., Zhang, X., Zhang, X. (2013) Life-cycle private costs of hybrid electric vehicles in the current Chinese market. Energy Policy 55(0), 501-510.
  22. Linssen, J., Schulz, A., Mischinger, S., Maas, H., Günther, C., Weinmann, O., Abbasi, E., Bickert, S., Danzer, M., Hennings, W., Lindwedel, E., Marker, S., Schindler, V., Schmidt, A., Schmitz, P., Schott, B., Strunz, K., Waldowski, P. (2012) Netzintegration von Fahrzeugen mit elektrifizierten Antriebssystemen in bestehende und zukünftige Energieversorgungsstrukturen. Advances in Systems Analyses 1. Forschungszentrum Jülich GmbH. Zentralbibliothek Verlag, Jülich.
  23. Mueller, M. G., de Haan, P. (2009) How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars--Part I: Model structure, simulation of bounded rationality, and model validation. Energy Policy 37(3), 1072-1082.
  24. Richter, J., Lindenberger, D. (2010) Potenziale der Elektromobilität bis 2050 – Eine szenarienbasierte Analyse der Wirtschaftlichkeit, Umweltauswirkungen und Systemintegration. ewi, Köln.
  25. Sharma, R., Manzie, C., Bessede, M., Brear, M. J., Crawford, R. H. (2012) Conventional, hybrid and electric vehicles for Australian driving conditions – Part 1: Technical and financial analysis. Transportation Research Part C: Emerging Technologies 25(0), 238-249.
  26. Sommer, K. (2011) Continental-Mobilitätsstudie 2011. Hannover.
  27. The Boston Consulting Group (2010) Batteries for Electric Cars. Challanges, Opportunities, and the Outlook to 2020. BCG Focus, The Boston Consulting Group (BCG).
  28. Umweltbundesamt (2011) National Trend Tables for the German Atmospheric Emission Reporting 1990-2009. Final version: 17.01.2011. Dessau.
  29. van Vliet, O., Brouwer, A. S., Kuramochi, T., van den Broek, M., Faaij, A. (2011) Energy use, cost and CO2 emissions of electric cars. Journal of Power Sources 196(4), 2298-2310.