RWTH Aachen University, Laboratory for Machine Tools and Production Engineering (WZL), Chair of Production Management, 52056 Aachen, Germany
BibTex Citation Data :
@article{IJRED6183, author = {Stefan Bickert}, title = {Financial Measures for Electric Vehicles:Supporting the Integration of Renewable Energy in the Mobility Sector in Germany}, journal = {International Journal of Renewable Energy Development}, volume = {3}, number = {1}, year = {2014}, keywords = {Electric Vehicle Taxation; Energy Prices; Grid Services, Incentive Schemes; Renewable Energy Development;Sustainable Mobility}, abstract = { Electric vehicles (EV) are able to support the transition of sectors towards sustainability. The operation of these vehicles with renewable energies saves local and global emissions. Furthermore, fluctuating renewable energies can be integrated in existing energy systems by using electric vehicles for grid services. Thus, implementation of advantages requires market establishment of electric vehicles. The article provides a review on potentials of market development by comparing and studying costs of electric and conventional vehicles as well as effects of financial measures on costs of EV. These cost comparisons are based on market data and predictions of cost developments for private consumers in Germany. Costs are analysed by an economic model of Total Cost of Ownership (TCO), aiming to display financial proportionality between vehicles in different years of acquisition (2010 to 2030). In a further step, external financial measures are analysed and integrated in the cost model as one possibility to enhance and secure the market introduction. Findings demonstrate that higher costs of acquisition of electric vehicles cannot be compensated by lower costs of operation. While mobility costs of conventionally vehicles stay constant or even increase during the considered years, mobility costs of electric vehicles significantly decrease especially in the upcoming years. In all cases mobility costs of electric vehicles exceed costs of conventional vehicles, but differences are reduced from 19€ct in 2010 to 3€ct in 2030. Cost decreases of the battery have high influence on the increasing financial comparability of EV. Concerning financial measures especially a differentiation of energy prices and a compensation of grid services can help to decrease total costs of EV and to manage a shift from fossil energy resources to electricity in the mobility sector. The existing tax exemption for EV compensates only a little fraction (about 6%) of the cost difference. This highlights the importance of research on incentive schemes to support market integration of EV and thereby the integration of renewable energies in the mobility sector. This integration is supported by the possibility of storing surplus fluctuating renewable energy in the batteries of EV. }, pages = {45--53} doi = {10.14710/ijred.3.1.45-53}, url = {https://ejournal.undip.ac.id/index.php/ijred/article/view/6183} }
Refworks Citation Data :
Electric vehicles (EV) are able to support the transition of sectors towards sustainability. The operation of these vehicles with renewable energies saves local and global emissions. Furthermore, fluctuating renewable energies can be integrated in existing energy systems by using electric vehicles for grid services. Thus, implementation of advantages requires market establishment of electric vehicles. The article provides a review on potentials of market development by comparing and studying costs of electric and conventional vehicles as well as effects of financial measures on costs of EV. These cost comparisons are based on market data and predictions of cost developments for private consumers in Germany. Costs are analysed by an economic model of Total Cost of Ownership (TCO), aiming to display financial proportionality between vehicles in different years of acquisition (2010 to 2030). In a further step, external financial measures are analysed and integrated in the cost model as one possibility to enhance and secure the market introduction. Findings demonstrate that higher costs of acquisition of electric vehicles cannot be compensated by lower costs of operation. While mobility costs of conventionally vehicles stay constant or even increase during the considered years, mobility costs of electric vehicles significantly decrease especially in the upcoming years. In all cases mobility costs of electric vehicles exceed costs of conventional vehicles, but differences are reduced from 19€ct in 2010 to 3€ct in 2030. Cost decreases of the battery have high influence on the increasing financial comparability of EV. Concerning financial measures especially a differentiation of energy prices and a compensation of grid services can help to decrease total costs of EV and to manage a shift from fossil energy resources to electricity in the mobility sector. The existing tax exemption for EV compensates only a little fraction (about 6%) of the cost difference. This highlights the importance of research on incentive schemes to support market integration of EV and thereby the integration of renewable energies in the mobility sector. This integration is supported by the possibility of storing surplus fluctuating renewable energy in the batteries of EV.
Article Metrics:
Last update:
The impact of financial incentives on the total cost of ownership of electric light commercial vehicles in EU countries
Assembly of quinone-based renewable biobattery using redox molecules from Lawsonia inermis
Electric Mobility in a Smart City: European Overview
Potential of Wind Energy in Albania and Kosovo: Equity Payback and GHG Reduction of Wind Turbine Installation
Track to reach net-zero: Progress and pitfalls
Developments of CO2-emissions and costs for small electric and combustion engine vehicles in Germany
Last update: 2024-09-17 17:33:43
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.