skip to main content

Investigation of the Impact of Large-Scale Wind Power and Solar Power Plants on a Vietnamese Transmission Network

1Faculty of Engineering and Technology, Quy Nhon University, Quy Nhon City, Binh Dinh, Vietnam, Viet Nam

2The University of Danang - University of Technology and Education, Da Nang city, Vietnam, Viet Nam

3The University of Danang - University of Science and Technology, Da Nang city, Vietnam, Viet Nam

Received: 3 Jan 2022; Revised: 24 May 2022; Accepted: 1 Jun 2022; Available online: 20 Jun 2022; Published: 4 Aug 2022.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Integrating wind power and solar power plants into a power system has significantly grown over the past decade and is expected to grow to unprecedented levels in the coming years. In Vietnam, much large-scale wind power and solar power plants have been built and connected to the power system in recent years. To investigate and evaluate the impact of these power plants on system power operation, the 110kV power transmission network of Binh Dinh province in Vietnam is used in this paper. In the system, the Phuong Mai 3 wind power plant with a capacity of 21MW, the Fujiwara solar power plant with a peak capacity of 50MWp, and the Cat Hiep solar power plant with a peak capacity of 49.5MWp are modeled by using the PSS/E software to simulate and analyze their impacts on power system stability of the 110kV transmission network in Binh Dinh province, Vietnam. Besides, the control strategies of these power plants are also established to investigate their impacts on the network. In addition, this paper proposes three typical scenarios for the wind power and solar power plants in the system. For each scenario, the grid's operating parameters such as voltage variations and frequency variations are acquired for analyzing and evaluating their impacts on the frequency and voltage variations of the network. The simulation results show that the 110kV power transmission network remains in a stable operation mode after the fault scenarios for the wind and solar power plants. Furthermore, these simulation results provide some guidance for the actual operation
Fulltext View|Download
Keywords: renewable resource; transmission network; voltage variation; frequency variation, Fault scenario

Article Metrics:

  1. Abbas, S. R., Kazmi, S. A. A., Naqvi, M., Javed, A., Naqvi, S. R., Ullah, K., Khan, T. R., & Shin, D. R. (2020). Impact analysis of large-scale wind farms integration in weak transmission grid from technical perspectives. Energies, 13(20), 5513; doi: 10.3390/en13205513
  2. Ameur, A., Berrada, A., Loudiyi, K., & Aggour, M. (2019). Analysis of renewable energy integration into the transmission network. The Electricity Journal, 32(10), 106676; doi: 10.1016/j.tej.2019.106676
  3. Cabrera-Tobar, A., Bullich-Massagué, E., Aragüés-Peñalba, M., & Gomis-Bellmunt, O. (2016). Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system. Renewable and Sustainable Energy Reviews, 62, 971-987; doi: 10.1016/j.rser.2016.05.044
  4. Cheng, D., Mather, B. A., Seguin, R., Hambrick, J., & Broadwater, R. P. (2015). Photovoltaic (PV) impact assessment for very high penetration levels. IEEE Journal of Photovoltaics, 6(1), 295-300; doi: 10.1109/JPHOTOV.2015.2481605
  5. Dai, L. V., Khoa, N. M., & Quyen, L. C. (2020). An Innovatory Method Based on Continuation Power Flow to Analyze Power System Voltage Stability with Distributed Generation Penetration. Complexity, 2020, 8037837; doi: 10.1155/2020/8037837
  6. Denholm, P., Hand, M. (2011). Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy, 39(3), 1817-1830; doi: 10.1016/j.enpol.2011.01.019
  7. Djamel, L., Zohra, M., & Selwa, F. (2016). Influence of the wind farm integration on load flow and voltage in electrical power system. International Journal of Hydrogen Energy, 41(29), 12603-12617; doi: 10.1016/j.ijhydene.2016.04.230
  8. Du, E., Zhang, N., Hodge, B. M., Wang, Q., Kang, C., Kroposki, B., & Xia, Q. (2018). The role of concentrating solar power toward high renewable energy penetrated power systems. IEEE Transactions on Power Systems, 33(6), 6630-6641; doi: 10.1109/TPWRS.2018.2834461
  9. Fant, C., Schlosser, C. A., & Strzepek, K. (2016). The impact of climate change on wind and solar resources in southern Africa. Applied Energy, 161, 556-564; doi: 10.1016/j.apenergy.2015.03.042
  10. Hamdan, I., Maghraby, A., & Noureldeen, O. (2019), Stability improvement and control of grid-connected photovoltaic system during faults using supercapacitor. SN Applied Sciences, 1, 1687; doi: 10.1007/s42452-019-1743-2
  11. Hu, J., Liu, X., Shahidehpour, M., Xia, S. (2021). Optimal Operation of Energy Hubs With Large-Scale Distributed Energy Resources for Distribution Network Congestion Management. IEEE Transactions on Sustainable Energy, 12(3), 1755-1765; doi: 10.1109/TSTE.2021.3064375
  12. Impram, S., Nese, S. V., & Oral, B. (2020). Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strategy Reviews, 31, 100539; doi: 10.1016/j.esr.2020.100539
  13. Jasemi, M., Adabi, F., Mozafari, B., Salahi, S. (2016). Optimal operation of micro-grids considering the uncertainties of demand and renewable energy resources generation. International Journal of Renewable Energy Development, 5(3), 233-248; doi: 10.14710/ijred.5.3.233-248
  14. Kaloi, G. S., Wang, J., & Baloch, M. H. (2016). Active and reactive power control of the doubly fed induction generator based on wind energy conversion system. Energy Reports, 2(2016), 194-200; doi: 10.1016/j.egyr.2016.08.001
  15. Kim, E. H., Kim, J. H., Kim, S. H., Choi, J., Lee, K. Y., & Kim, H. C. (2011). Impact analysis of wind farms in the Jeju Island power system. IEEE Systems Journal, 6(1), 134-139; doi: 10.1109/JSYST.2011.2163017
  16. Khoa, N. M., & Tung, D. D. (2018). Locating fault on transmission line with static var compensator based on phasor measurement unit. Energies, 11(9), 2380; doi: 10.3390/en11092380
  17. Khoa, N. M., Tung, D. D., & Dai, L. V. (2022). Experimental study on low voltage ride-through of DFIG-based wind turbine. International Journal of Electrical and Electronic Engineering & Telecommunications, 11(1), 1-11, 2022; doi: 10.18178/ijeetc.11.1.1-11
  18. Li, L., Li, H., Tseng, M. L., Feng, H., & Chiu, A. S. F. (2020). Renewable energy system on frequency stability control strategy using virtual synchronous generator. Symmertry, 12, 1697; doi: 10.3390/sym121016
  19. Lin, C., Song, Y., Zhao, J., Liang, G., Qiu, J. (2020). Assessing the impacts of large-scale offshore wind powerin Southern China, Energy Conversion and Economics, John Wiley & Sons Ltd
  20. Liu, R., Yao, J., Wang, X., Sun, P., Pei, J., & Hu, J. (2020). Dynamic stability analysis and improved LVRT schemes of DFIG-based wind turbines during a symmetrical fault in a weak grid. IEEE Transactions on Power Electronics, 35(1), 303-318; doi: 10.1109/TPEL.2019.2911346
  21. Mahela, O. P., & Shaik, A. G. (2016). Comprehensive overview of grid interfaced wind energy generation systems. Renewable and Sustainable Energy Reviews, 57, 260-281; doi: 10.1016/j.rser.2015.12.048
  22. Muller, S., Deicke, M., & De Doncker, R. W. (2002). Doubly fed induction generator systems for wind turbines. IEEE Industry Applications Magazine, 8(3), 26-33; doi: 10.1109/2943.999610
  23. Rauschenbach, H. (1980). Solar cell array design handbook-The principles and technology of photovoltaic energy conversion, Springer
  24. Ullah, Z., Baseer, M. (2022). Operational planning and design of market-based virtual power plant with high penetration of renewable energy sources. International Journal of Renewable Energy Development, 11(3), 620-629; doi: 10.14710/ijred.2022.44586
  25. Villalva, M. G., Gazoli, J. R., & Ruppert-Filho, E. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics, 24(5), 1198-1208; doi: 10.1109/TPEL.2009.2013862
  26. Wang, L., Qiao, T., Zhao, B., Zeng, X., & Yuan, Q. (2020). Modeling and parameter optimization of grid-connected photovoltaic systems considering the low voltage ride-through control. Energies, 13(15), 3972; doi: 10.3390/en13153972
  27. Wattana, B., Aungyut, P. (2022). Impacts of solar electricity generation on the Thai Electricity Industry. International Journal of Renewable Energy Development, 11(1), 157-163; doi: 10.14710/ijred.2022.41059
  28. Wu, Y. K., Ye, G. T., & Shaaban, M. (2016). Analysis of impact of integration of large PV generation capacity and optimization of PV capacity: Case studies in Taiwan. IEEE Transactions on Industry Applications, 52(6), 4535-4548; doi: 10.1109/TIA.2016.2594283
  29. Xu, D., Blaabjerg, F., Chen, W., & Zhu, N. (2018). Advanced control of doubly fed induction generator for wind power systems, John Wiley & Sons
  30. Yang, L., Xu, Z., Ostergaard, J., Dong, Z. Y., Wong, K.P. (2012). Advanced control strategy of DFIG wind turbines for power system fault ride through. IEEE Transactions on Power Systems, 27(2), 713-722; doi: 10.1109/TPWRS.2011.2174387

Last update:

  1. Methods for Fault Location in High Voltage Power Transmission Lines: A Comparative Analysis

    Truong Ngoc Hung. International Journal of Renewable Energy Development, 11 (4), 2022. doi: 10.14710/ijred.2022.46501

Last update: 2024-04-14 17:36:48

No citation recorded.