skip to main content

A Green Heterogeneous Catalyst Production and Characterization for Biodiesel Production using RSM and ANN Approach

1Department of Mechanical Engineering, Raghu Engineering College, Visakhapatnam,531162, India

2Department of Automotive Engineering, Universitas Muhammadiyah Magelang, Magelang,56172, Indonesia

3Center of Energy for Society and Industry (CESI), Universitas Muhammadiyah Magelang, Magelang,56172, Indonesia

Received: 26 Dec 2021; Revised: 10 Apr 2022; Accepted: 16 Apr 2022; Available online: 27 Apr 2022; Published: 4 Aug 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
In this work, naturally available moringa oleifera leaves (also known as horseradish trees or drumstick trees) are chosen as a heterogeneous catalyst in the transesterification for biodiesel production from palm oil. The dry moringa oleifera leaves are calcinated at 700 °C for 3 hours to improve their adsorbing property. The calcinated catalyst characterization analysis from XRD and EDX highlights the presence of calcium, potassium, and other elements. Response surface method (RSM) optimization and artificial neural network (ANN) modeling were carried out to elucidate the interaction effect of significant process variables on biodiesel yield. The results show that a maximum biodiesel yield of 92.82% was achieved at optimum conditions of catalyst usage (9 wt.%), molar ratio, methanol to triglyceride (7:1), temperature (50 °C) and reaction time (120 min). The catalyst usage (wt.%) was identified as a significant process variable, followed by the molar ratio. Furthermore, the biodiesel’s significant fuel properties in terms of thermal, physical, chemical, and elemental match the established standards of ASTM. Finally, when the catalyst was reused for five cycles, more than 50% of the biodiesel yield was achieved.
Fulltext View|Download
Keywords: Moringa oleifera leaves; Calcination; Biodiesel; Optimization and Modeling

Article Metrics:

  1. Adetunji, O. R., Ogbuokiri, M. C., Dairo, O. U., Olatunde, O. B., & Okediran, I. K. (2021). The Effect of Excess Heat Utilization on the Production Cost of Cement. Mechanical Engineering for Society and Industry, 1(2), 104-114. https://doi.org/10.31603/mesi.5987
  2. Aleman-Ramirez, J. L., Moreira, J., Torres-Arellano, S., Longoria, A., Okoye, P. U., & Sebastian, P. J. (2021). Preparation of a heterogeneous catalyst from moringa leaves as a sustainable precursor for biodiesel production. Fuel, 284, 118983. https://doi.org/10.1016/j.fuel.2020.118983
  3. Basha, S. A., Gopal, K. R., & Jebaraj, S. (2009). A review on biodiesel production, combustion, emissions and performance. Renewable and Sustainable Energy Reviews, 13(6-7), 1628-1634. https://doi.org/10.1016/j.rser.2008.09.031
  4. Changmai, B., Vanlalveni, C., Ingle, A. P., Bhagat, R., & Rokhum, L. (2020). Widely used catalysts in biodiesel production: a review. RSC Advances, 10(68), 41625-41679. https://doi.org/10.1039/D0RA07931F
  5. Dai, Y.-M., Chen, K.-T., Wang, Y.-J., & Chen, C.-C. (2014). Application of peanut husk ash as a low-cost solid catalyst for biodiesel production. International Journal of Chemical Engineering and Applications, 5(3), 276. https://doi.org/10.7763/IJCEA.2014.V5.393
  6. Demir, V. G., Yuksel, H., Koten, H., Gul, M. Z., & Soyhan, H. S. (2019). Microwave-assisted pilot-scale biodiesel production and engine tests. Proceedings of the Institution of Civil Engineers - Energy, 172(1), 1-11. https://doi.org/10.1680/jener.18.00006
  7. Elehinafe, F. B., Okedere, O. B., Ebong-Bassey, Q. E., & Sonibare, J. A. (2021). Data on Emission Factors of Gaseous Emissions from Combustion of Woody Biomasses as Potential Fuels for Firing Thermal Power Plants in Nigeria. Mechanical Engineering for Society and Industry, 1(2), 75-82. https://doi.org/10.31603/mesi.5548
  8. Fan, M., Wu, H., Shi, M., Zhang, P., & Jiang, P. (2019). Well-dispersive K2OKCl alkaline catalyst derived from waste banana peel for biodiesel synthesis. Green Energy & Environment, 4(3), 322-327. https://doi.org/10.1016/j.gee.2018.09.004
  9. Gopalakrishnan, L., Doriya, K., & Kumar, D. S. (2016). Moringa oleifera: A review on nutritive importance and its medicinal application. Food Science and Human Wellness, 5(2), 49-56. https://doi.org/10.1016/j.fshw.2016.04.001
  10. Hadiyanto, H., Lestari, S.P., Widayat, W.(2016). Preparation and characterization of Anadara Granosa shells and CaCo3 as heterogeneous catalyst for biodiesel production. Bulletin of Chemical Reaction Engineering & Catalysis, 11(1), 21-26. https://doi.org/10.9767/bcrec.11.1.402.21-26
  11. Hariyanto, R. A. B., Firmansyah, R. A., Burhan, R. Y. P., & Zetra, Y. (2021). Synthesis of Bio-additive for Low Sulphur Diesel: Transesterification of Soybean Oil and Ethylene Glycol using K2CO3 Catalyst. Automotive Experiences, 4(1), 44-50. https://doi.org/10.31603/ae.4694
  12. Islam, M. A., Brown, R. J., Brooks, P. R., Jahirul, M. I., Bockhorn, H., & Heimann, K. (2015). Investigation of the effects of the fatty acid profile on fuel properties using a multi-criteria decision analysis. Energy Conversion and Management, 98, 340-347. https://doi.org/10.1016/j.enconman.2015.04.009
  13. Jiang, W., Lu, H., Qi, T., Yan, S., & Liang, B. (2010). Preparation, application, and optimization of Zn/Al complex oxides for biodiesel production under sub-critical conditions. Biotechnology Advances, 28(5), 620-627. https://doi.org/10.1016/j.biotechadv.2010.05.011
  14. Karmakar, A., Karmakar, S., & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology, 101(19), 7201-7210. https://doi.org/10.1016/j.biortech.2010.04.079
  15. Kivevele, T., Raja, T., Pirouzfar, V., Waluyo, B., & Setiyo, M. (2020). LPG-Fueled Vehicles: An Overview of Technology and Market Trend. Automotive Experiences, 3(1), 6-19. https://doi.org/10.31603/ae.v3i1.3334
  16. Kolakoti, A. (2020). Optimization of biodiesel production from waste cooking sunflower oil by Taguchi and ANN techniques. Journal of Thermal Engineering, 6(5), 712-723. https://doi.org/10.18186/thermal.796761
  17. Kolakoti, A., Prasadarao, B., Satyanarayana, K., Setiyo, M., Köten, H., & Raghu, M. (2022). Elemental, Thermal and Physicochemical Investigation of Novel Biodiesel from Wodyetia Bifurcata and Its Properties Optimization using Artificial Neural Network (ANN). Automotive Experiences, 5(1), 3-15
  18. Kolakoti, A., & Rao, B. V. A. (2019). Effect of fatty acid composition on the performance and emission characteristics of an IDI supercharged engine using neat palm biodiesel and coconut biodiesel as an additive. Biofuels, 10(5), 591-605. https://doi.org/10.1080/17597269.2017.1332293
  19. Kolakoti, A., & Rao, B. V. A. (2020a). Relative Testing of Neat Jatropha Methyl Ester by Preheating to Viscosity Saturation in IDI Engine-An Optimisation Approach. International Journal of Automotive and Mechanical Engineering, 17(2), 8052-8066. https://doi.org/10.15282/ijame.17.2.2020.23.0604
  20. Kolakoti, A., & Rao, B. V. A. (2020b). Performance and emission analysis of a naturally aspirated and supercharged IDI diesel engine using palm methyl ester. Biofuels, 11(4), 479-490. https://doi.org/10.1080/17597269.2017.1374770
  21. Kolakoti, A., & Satish, G. (2020). Biodiesel production from low-grade oil using heterogeneous catalyst: an optimisation and ANN modelling. Australian Journal of Mechanical Engineering, 1-13. https://doi.org/10.1080/14484846.2020.1842298
  22. Kolakoti, A., Setiyo, M., & Waluyo, B. (2021). Biodiesel Production from Waste Cooking Oil: Characterization, Modeling and Optimization. Mechanical Engineering for Society and Industry, 1(1), 22-30. https://doi.org/10.31603/mesi.5320
  23. Lee, A. F., Bennett, J. A., Manayil, J. C., & Wilson, K. (2014). Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chemical Society Reviews, 43(22), 7887-7916. https://doi.org/10.1039/C4CS00189C
  24. Munahar, S., Purnomo, B. C., & Köten, H. (2021). Fuel Control Systems for Planetary Transmission Vehicles: A Contribution to the LPG-fueled Vehicles Community. Mechanical Engineering for Society and Industry, 1(1), 14-21. https://doi.org/10.31603/mesi.5263
  25. Muthusamy, B., & Subramaniapillai, N. (2020). Banana peduncle-a green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil. Renewable Energy, 146, 2255-2269. https://doi.org/10.1016/j.renene.2019.08.062
  26. Nasreen, S., Liu, H., Skala, D., Waseem, A., & Wan, L. (2015). Preparation of biodiesel from soybean oil using La/Mn oxide catalyst. Fuel Processing Technology, 131, 290-296. https://doi.org/10.1016/j.fuproc.2014.11.029
  27. Onoji, S. E., Iyuke, S. E., Igbafe, A. I., & Daramola, M. O. (2017). Transesterification of rubber seed oil to biodiesel over a calcined waste rubber seed shell catalyst: Modeling and optimization of process variables. Energy & Fuels, 31(6), 6109-6119. https://doi.org/10.1021/acs.energyfuels.7b00331
  28. Rashid, U., Soltani, S., Al-Resayes, S. I., & Nehdi, I. A. (2018). Metal oxide catalysts for biodiesel production. In Metal Oxides in Energy Technologies (pp. 303-319). Elsevier. https://doi.org/10.1016/B978-0-12-811167-3.00011-0
  29. Satya, S., Kolakoti, A., & Rao, R. (2019). Optimization of palm methyl ester and its effect on fatty acid compositions and cetane number. Mathematical Models in Engineering, 5(1), 25-34. https://doi.org/10.21595/mme.2019.20469
  30. Setiyo, M. (2022). Alternative fuels for transportation sector in Indonesia. Mechanical Engineering for Society and Industry, 2(1), 1-6. https://doi.org/10.31603/mesi.5309
  31. Sewsynker-Sukai, Y., Faloye, F., & Kana, E. B. G. (2017). Artificial neural networks: an efficient tool for modelling and optimization of biofuel production (a mini review). Biotechnology & Biotechnological Equipment, 31(2), 221-235. https://doi.org/10.1080/13102818.2016.1269616
  32. Sharma, M., Khan, A. A., Puri, S. K., & Tuli, D. K. (2012). Wood ash as a potential heterogeneous catalyst for biodiesel synthesis. Biomass and Bioenergy, 41, 94-106. https://doi.org/10.1016/j.biombioe.2012.02.017
  33. Sinha, S., Agarwal, A. K., & Garg, S. (2008). Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Conversion and Management, 49(5), 1248-1257. https://doi.org/10.1016/j.enconman.2007.08.010
  34. Souza, S. P., Seabra, J. E. A., & Nogueira, L. A. H. (2018). Feedstocks for biodiesel production: Brazilian and global perspectives. Biofuels, 9(4), 455-478. https://doi.org/10.1080/17597269.2017.1278931
  35. Sunaryo, S., Sesotyo, P. A., Saputra, E., & Sasmito, A. P. (2021). Performance and Fuel Consumption of Diesel Engine Fueled by Diesel Fuel and Waste Plastic Oil Blends: An Experimental Investigation. Automotive Experiences, 4(1), 20-26. https://doi.org/10.31603/ae.3692
  36. Supriyadi, S., Purwanto, P., Anggoro, D. D., & Hermawan, H. (2022). The Effects of Sodium Hydroxide (NaOH) Concentration and Reaction Temperature on The Properties of Biodiesel from Philippine Tung (Reutealis Trisperma) Seeds. Automotive Experiences, 5(1), 57-67
  37. Supriyanto, Ismanto, & Suwito, N. (2019). Zeolit Alam Sebagai Katalis Pyrolisis Limbah Ban Bekas Menjadi Bahan Bakar Cair [Natural Zeolite as Pyrolisis Catalyst of Used Tires into Liquid Fuels]. Automotive Experiences, 2(1), 15-21. https://doi.org/10.31603/ae.v2i1.2377
  38. Susanto, R. M., & Setiyo, M. (2018). Natural Gas Vehicle (NGV) : Status Teknologi dan Peluang Status Teknologi dan Peluang Pengembangannya. Automotive Experiences, 1(01), 1-6. https://doi.org/10.31603/ae.v1i01.2000
  39. Syarifudin, S., Sanjaya, F. L., Fatkhurrozak, F., Usman, M. K., Sibagariang, Y., & Köten, H. (2020). Effect Methanol, Ethanol, Butanol on the Emissions Characteristics of Gasoline Engine. Automotive Experiences, 4(2), 62-67. https://doi.org/10.31603/ae.4641
  40. Wahyu, M., Rahmad, H., & Gotama, G. J. (2019). Effect of Cassava Biogasoline on Fuel Consumption and CO Exhaust Emissions. Automotive Experiences, 2(3), 97-103. https://doi.org/10.31603/ae.v2i3.2991
  41. Wei, Z., Xu, C., & Li, B. (2009). Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresource Technology, 100(11), 2883-2885. https://doi.org/10.1016/j.biortech.2008.12.039
  42. Wen, L., Wang, Y., Lu, D., Hu, S., & Han, H. (2010). Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel, 89(9), 2267-2271. https://doi.org/10.1016/j.fuel.2010.01.028
  43. Zetra, Y., Sholihah, S. M. W., Burhan, R. Y. P., & Firmansyah, R. A. (2021). Synthesis and Characterization of Diesel Lubricity Enhancer through Transesterification Reaction of Palm Oil with 1, 2-Ethanediol. Automotive Experiences, 4(2), 104-111. https://doi.org/10.31603/ae.4664

Last update:

No citation recorded.

Last update:

No citation recorded.