skip to main content

Au Nanoparticles Effect on Inverted ZnO Nanorods/Organic Hybrid Solar Cell Performance

1VKTECH Research Center, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Viet Nam

2Department of Solid State Physics, University of Science, Vietnam National University-Ho Chi Minh City (VNU-HCM), 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh City, Viet Nam

3Faculty of Science, Dong Nai University, 4 Le Quy Don Street, Tan Hiep Ward, Bien Hoa City 76111, Viet Nam

Received: 3 Aug 2021; Revised: 18 Oct 2021; Accepted: 26 Oct 2021; Available online: 3 Nov 2021; Published: 1 Feb 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

The sun provides a plentiful and inexpensive source of carbon-neutral energy that has yet to be fully utilized. This is a major driving force behind the development of organic photovoltaic (OPV) materials and devices, which are expected to offer benefits such as low cost, flexibility, and widespread availability. For the photovoltaic performance enhancement of the inverted ZnO-nanorods (NR)/organic hybrid solar cells with poly(3-exylthiophene):(6,6)-phenyl-C61-butyric-acid-methylester (P3HT:PCBM) and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) active layers, gold nanoparticles (Au-NPs) were introduced into the interface between indium-thin-oxide cathode layer and ZnO cathode buffer layer, and the efficiency improvement was observed. It's worth noting that adding Au NPs had both a positive and negative impact on device performance. Au NPs were shown to be advantageous to localized surface plasmon resonance (LSPs) in the coupling of dispersed light from ZnO NRs in order to extend the light's path length in the absorbing medium. Although the light absorption in the active layer could be enhanced, Au NPs might also act as recombination centers within the active layer. To avoid this adverse effect, Au NPs are covered by the ZnO seeded layer to prevent Au NPs from direct contact with the active layer. The dominant surface plasmonic effect of Au NPs increased the photoelectric conversion efficiency from 2.4% to 3.8%.

Fulltext View|Download
Keywords: Organic solar cells; gold nanoparticles; localized surface Plasmon
Funding: This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2018.352

Article Metrics:

  1. Alem, S., Bettignies, R. De, Nunzi, J., & Cariou, M. (2004). Efficient polymer-based interpenetrated network photovoltaic cells. Applied Physics Letters, 84(12), 2178–2180.
  2. Alem, S., Gao, J., Wantz, G., Alem, S., Gao, J., & Wantz, G. (2013). Photovoltaic response of symmetric sandwich polymer cells with identical electrodes Photovoltaic response of symmetric sandwich polymer cells with identical. Journal of Applied Physics, 044505(2009).
  3. Ameri, T., Dennler, G., Lungenschmied, C., & Brabec, C. J. (2009). Organic tandem solar cells : A review. Energy & Environmental Science, 347–363.
  4. Brabec, C. J., Shaheen, S. E., Winder, C., Sariciftci, N. S., & Denk, P. (2002). Effect of LiF/metal electrodes on the performance of plastic solar cells. Applied Physics Letters, 80(7), 1288–1290.
  5. Chen, F., Wu, J., Lee, C., Hong, Y., Kuo, C., & Huang, M. H. (2009). Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Applied Physics Letters, 95(013305), 1–5.
  6. Chen, X., Zuo, L., Fu, W., Yan, Q., Fan, C., & Chen, H. (2013). Solar Energy Materials & Solar Cells Insight into the efficiency enhancement of polymer solar cells by incorporating gold nanoparticles. Solar Energy Materials and Solar Cells, 111, 1–8.
  7. Cuong, T. V., Pham, V. H., Chung, J. S., Shin, E. W., Yoo, D. H., Hahn, S. H., Huh, J. S., Rue, G. H., Kim, E. J., Hur, S. H., & Kohl, P. A. (2010). Solution-processed ZnO-chemically converted graphene gas sensor. Materials Letters, 64(22), 2479–2482.
  8. Eo, Y. S., Rhee, H. W., Chin, B. D., & Yu, J. W. (2009). Influence of metal cathode for organic photovoltaic device performance. Synthetic Metals, 159(17–18), 1910–1913.
  9. Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2014). Solar cell ef fi ciency tables ( version 44 ). version 44, 701–710.
  10. Gu, M., Ouyang, Z., Jia, B., Chen, X., Fahim, N., Li, X., Ventura, M. J., & Shi, Z. (2012). Nanoplasmonics : a frontier of photovoltaic solar cells. Nanopho, 1, 235–248.
  11. Hau, S. K., Yip, H., Baek, N. S., Zou, J., Malley, K. O., Hau, S. K., Yip, H., Baek, N. S., Zou, J., Malley, K. O., & Jen, A. K. (2008). Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Applied Physics Letters, 92(253301), 1–4.
  12. Hoppe, B. H., Niggemann, M., Winder, C., Kraut, J., Hiesgen, R., Hinsch, A., Meissner, D., & Sariciftci, N. S. (2004). Nanoscale Morphology of Conjugated Polymer / Fullerene-Based Bulk-Heterojunction Solar Cells **. 10, 1005–1011.
  13. Hwang, J., Hwan, J., Soo, J., Yun, D., & Cho, K. (2009). High efficiency polymer solar cells with wet deposited plasmonic gold nanodots. Organic Electronics, 10(3), 416–420.
  14. Jagadeesh, V., Vempati, S., & Sundarrajan, S. (2014). ScienceDirect Effective nanostructured morphologies for efficient hybrid solar cells. Solar Energy, 106, 1–22.
  15. Kaltenbrunner, M., White, M. S., Głowacki, E. D., Sekitani, T., Someya, T., Sariciftci, N. S., & Bauer, S. (2012). ultrathin and lightweight organic solar cells with high flexibility.
  16. Krebs, F. C. (2009). Solar Energy Materials & Solar Cells Fabrication and processing of polymer solar cells : A review of printing and coating techniques. 93, 394–412.
  17. Li, P., Jiu, T., Tang, G., Wang, G., Li, J., Li, X., & Fang, and J. (2014). Solvents Induced ZnO Nanoparticles Aggregation Associated with Their Interfacial Effect on Organic Solar Cells. ACS Applied Materials and Interfaces, 6(20), 18172–18179.
  18. Liang, B. Y., Xu, Z., Xia, J., Tsai, S., Wu, Y., Li, G., Ray, C., & Yu, L. (2010). For the Bright Future — Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7 . 4 %. 135–138.
  19. Lu, L., Luo, Z., Xu, T., & Yu, L. (2012). Cooperative Plasmonic E ff ect of Ag and Au Nanoparticles on Enhancing Performance of Polymer Solar Cells. Nano Letters
  20. Notarianni, M., Vernon, K., Chou, A., Aljada, M., Liu, J., & Motta, N. (2014). ScienceDirect Plasmonic effect of gold nanoparticles in organic solar cells. Solar Energy, 106, 23–37.
  21. Park, M., Chin, B. D., Yu, J. W., Chun, M. S., & Han, S. H. (2008). Enhanced photocurrent and efficiency of poly(3-hexylthiophene)/fullerene photovoltaic devices by the incorporation of gold nanoparticles. Journal of Industrial and Engineering Chemistry, 14(3), 382–386.
  22. Shahin, S., Gangopadhyay, P., & Norwood, R. A. (2012). Ultrathin organic bulk heterojunction solar cells : Plasmon enhanced performance using Au nanoparticles. Applied Physics Letters, 101(053109), 1–4
  23. Tang, Z., Tress, W., & Ingana, O. (2014). Light trapping in thin film organic solar cells. June.
  24. Wang, D. H., Kim, D. Y., Choi, K. W., Seo, J. H., Im, S. H., Park, J. H., Park, O. O., & Heeger, A. J. (2011a). Enhancement of Donor – Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles **. Angew.Chem.Int.Ed, 14, 5519–5523.
  25. Wang, D. H., Kim, D. Y., Choi, K. W., Seo, J. H., Im, S. H., Park, J. H., Park, O. O., & Heeger, A. J. (2011b). Enhancement of Donor – Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles **. Angew.Chem.Int.Ed, 50, 5519–5523.
  26. Wang, K., Liu, C., Meng, T., Yi, C., & Gong, X. (2016). Inverted organic photovoltaic cells. Chemical Society Reviews, 45(10), 2937–2975.
  27. Wu, J. L., Chen, F. C., Hsiao, Y. S., Chien, F. C., Chen, P., Kuo, C. H., Huang, M. H., & Hsu, C. S. (2011). Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano, 5(2), 959–967.
  28. Yang, J., You, J., Chen, C., Hsu, W., Tan, H., & Zhang, X. W. (2011). Plasmonic Polymer Tandem Solar Cell. ACS Nano, 5(8), 6210–6217
  29. Yang, P., Zhou, X., Cao, G., & Luscombe, C. K. (2010). P3HT:PCBM polymer solar cells with TiO2 nanotube aggregates in the active layer. Journal of Materials Chemistry, 20(13), 2612–2616.
  30. Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (2004). Polymer Photovoltaic Cells : Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Advanced Functional Materials, 1789–1791
  31. Zafar, M., Kim, B., & Kim, D. (2020). Improvement in performance of inverted organic solar cell by rare earth element lanthanum doped ZnO electron buffer layer. Materials Chemistry and Physics, 240(May 2019), 122076.
  32. Zafar, M., Yun, J., & Kim, D. (2017). Applied Surface Science Performance of inverted polymer solar cells with randomly oriented ZnO nanorods coupled with atomic layer deposited ZnO. Applied Surface Science, 398, 9–14.

Last update:

No citation recorded.

Last update:

No citation recorded.