skip to main content

Biomass Feedstocks for Liquid Biofuels Production in Hawaii & Tropical Islands: A Review

Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan

Received: 18 Jun 2021; Revised: 11 Oct 2021; Accepted: 18 Oct 2021; Available online: 26 Oct 2021; Published: 1 Feb 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Many tropical islands, including Aruba, Seychelles, Mauritius, and Pacific Island countries, are entirely dependent on importing fossil fuels to meet their energy demands. Due to global warming, improving energy use efficiency and developing regionally available renewable energy resources are necessary to reduce carbon emissions. This review analyzed and identified biomass feedstocks to produce liquid biofuels targeting tropical islands, particularly focusing on Hawaii as a case study. Transportation and energy generation sectors consume 25.5% and 11.6%, respectively, of Hawaii's imported fossil fuels. Various nonedible feedstocks with information on their availability, production, and average yields of oils, fiber, sugars, and lipid content for liquid biofuels production are identified to add value to the total energy mix. The available biomass conversion technologies and production costs are summarized. In addition, a section on potentially using sewage sludge to produce biodiesel is also included. Based on a comparative analysis of kamani, croton, pongamia, jatropha, energycane, Leucaena hybrid, gliricidia, and eucalyptus feedstock resources, this study proposes that Hawaii and other similar tropical regions can potentially benefit from growing and producing economical liquid biofuels locally, especially for the transportation and electricity generation sectors

Fulltext View|Download
Keywords: biomass; feedstocks; nonedible; biofuels; liquid fuels; biomass conversion; tropical islands; sewage sludge

Article Metrics:

  1. Abbas, A., & Ansumali, S. (2010). Global Potential of Rice Husk as a Renewable Feedstock for Ethanol Biofuel Production. BioEnergy Research, 3(4), 328–334. https://doi.org/10.1007/s12155-010-9088-0
  2. Ahmad, A. A., Zawawi, N. A., Kasim, F. H., Inayat, A., & Khasri, A. (2016). Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews, 53, 1333–1347. https://doi.org/10.1016/j.rser.2015.09.030
  3. Aliyu, B., Agnew, B., & Douglas, S. (2010). Croton megalocarpus (Musine) seeds as a potential source of bio-diesel. Biomass and Bioenergy, 34(10), 1495–1499. https://doi.org/10.1016/j.biombioe.2010.04.026
  4. Amanda, B. (2019, April 22). Geography of Hawaii Facts & Information. ThoughtCo. https://www.thoughtco.com/geography-of-hawaii-1435728
  5. Amirta, R., Yuliansyah, A.E.M., Ananto, B.R., Setiyono, B., Haqiqi, M.T., Septiana, H.A., Lodong, M., & Oktavianto, R.N. (2016). Plant diversity and energy potency of community forest in East Kalimantan, Indonesia: Searching for fast growing wood species for energy production. Nusant. Biosci. 22–31. https://doi.org/10.13057/nusbiosci/n080106
  6. Anfilatov, A. A., & Chuvashev, A. N. (2020). Effect of methanol use in the engine on the workflow. IOP Conference Series: Materials Science and Engineering, 062064. https://doi.org/10.1088/1757-899x/862/6/062064
  7. Angulo-Mosquera, L. S., Alvarado-Alvarado, A. A., Rivas-Arrieta, M. J., Cattaneo, C. R., Rene, E. R., & García-Depraect, O. (2021). Production of solid biofuels from organic waste in developing countries: A review from sustainability and economic feasibility perspectives. Science of The Total Environment, 795, 148816. https://doi.org/10.1016/j.scitotenv.2021.148816
  8. Arazo, R. O., de Luna, M. D. G., & Capareda, S. C. (2017). Assessing biodiesel production from sewage sludge-derived bio-oil. Biocatalysis and Agricultural Biotechnology, 10, 189–196. https://doi.org/10.1016/j.bcab.2017.03.011
  9. Armbruster, W.J., Coyle, & W.T. (2006). Pacific Food System Outlook 2006–2007: The Future Role of Biofuels. Pacific Economic Cooperation Council, Singapore. http://www.pecc.org/food/ pfso-singapore2006/PECC_Annual_06_07.pdf
  10. Asadullah, M. (2014). Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Reviews, 29, 201–215. https://doi.org/10.1016/j.rser.2013.08.074
  11. Atapattu, A. A. A. J., Pushpakumara, D. K. N. G., Rupasinghe, W. M. D., Senarathne, S. H. S. & Raveendra, S. A. S. T. (2017). Potential of Gliricidia sepium as a fuelwood species for sustainable energy generation in Sri Lanka. Agricultural Research Journal, 54(1), 34. https://doi.org/10.5958/2395-146x.2017.00006.0
  12. Bailis, R. E., & Baka, J. E. (2010). Greenhouse Gas Emissions and Land Use Change from Jatropha Curcas-Based Jet Fuel in Brazil. Environmental Science & Technology, 44(22), 8684–8691. https://doi.org/10.1021/es1019178
  13. Baloch, P. A., Abro, B. A., Chandio, A. S., Depar, N., & Ansari M. A. (2015). Growth and yield response of Maize to integrated use of Gliricidia sepium, farm manure and N.P.K. fertilizers. Pak. J. Agri., Agric. Eng., Vet. Sci. 31 (1), 14-23
  14. Baste, S. V., Bhosale, A. V., & Chavan, S. B. (2013). Emission Characteristics of Pongamia pinnata (Karanja) Biodiesel and Its Blending up to 100% in a C.I. Engine. Res. J. Agric. For. Sci. 1 (7), 1-5
  15. Battie Laclau, P., & Laclau, J. P. (2009). Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops Research, 114(3), 351–360. https://doi.org/10.1016/j.fcr.2009.09.004
  16. Beck, R. W. (2006). Waste Characterization Study, City and County of Honolulu, Final Report, April 2007. at http://opala.org/pdfs/solid_waste/2006%20Final%20Waste%20Characterization%20Report.pdf
  17. Belal E. B. (2013). Bioethanol production from rice straw residues. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 44(1), 225–234. https://doi.org/10.1590/S1517-83822013000100033
  18. Biswas, B., Kazakoff, S. H., Jiang, Q., Samuel, S., Gresshoff, P. M., & Scott, P. T. (2013). Genetic and Genomic Analysis of the Tree Legume Pongamia pinnata as a Feedstock for Biofuels. The Plant Genome, 6(3). https://doi.org/10.3835/plantgenome2013.05.0015
  19. Bobade, S. N., & Khyade, V. B. (2012). Detail study on the Properties of Pongamia pinnata (Karanja) for the Production of Biofuel. Res. J. Chem. Sci., 2 (7), 16-20
  20. Boerrigter, H., & Rauch, R. (2005). Review of applications of gases from biomass gasification. In Syngas production and utilisation; The Netherlands, pp 211-230
  21. Botero, C. D., Restrepo, D. L., & Cardona, C. A. (2017). A comprehensive review on the implementation of the biorefinery concept in biodiesel production plants. Biofuel Research Journal, 4(3), 691–703. https://doi.org/10.18331/brj2017.4.3.6
  22. Brewbaker, J. (2013).' KX4-Hawaii', Seedless Interspecific Hybrid Leucaena. HortScience, 48 (3), 390-391. https://doi.org/10.21273/HORTSCI.48.3.390
  23. Brewbaker, J. L. (2008). Registration of KX2-Hawaii, Interspecific-Hybrid Leucaena. Journal of Plant Registrations, 2(3), 190–193. https://doi.org/10.3198/jpr2007.05.0298crc
  24. Brown, R. C. (2019). Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power (Wiley Series in Renewable Resource) (2nd ed.). Wiley
  25. Buratti, C., Belloni, E., Lascaro, E., Merli, F., & Ricciardi, P. (2018). Rice husk panels for building applications: thermal, acoustic and environmental characterization and comparison with other innovative recycled waste materials. Constr. Build. Mater. 171, 338–349. https://doi.org/10.1016/j.conbuildmat.2018.03.089
  26. Cabrera, M., Díaz-López, J. L., Agrela, F., & Rosales, J. (2020). Eco-Efficient Cement-Based Materials Using Biomass Bottom Ash: A Review. Applied Sciences, 10(22), 8026. https://doi.org/10.3390/app10228026
  27. Campbell, J. E., Lobell, D. B., Genova, R. C., & Field, C. B. (2008). The Global Potential of Bioenergy on Abandoned Agriculture Lands. Environmental Science & Technology, 42(15), 5791–5794. https://doi.org/10.1021/es800052w
  28. Carr, M. K. V., & Knox, J. W. (2011). The water relations and irrigation requirements of sugarcane (Saccharum officinarum): A REVIEW. Experimental Agriculture, 47(1), 1–25. https://doi.org/10.1017/s0014479710000645
  29. Carvalho-Netto, O. V., Bressiani, J. A., Soriano, H. L., Fiori, C. S., Santos, J. M., Barbosa, G. V., Xavier, M. A., Landell, M. G., & Pereira, G. A. (2014). The potential of the energy cane as the main biomass crop for the cellulosic industry. Chemical and Biological Technologies in Agriculture, 1(1). https://doi.org/10.1186/s40538-014-0020-2
  30. Chainey, R. (2015). Which countries waste the most food? World Economic Forum. https://www.weforum.org/agenda/2015/08/which-countries-waste-the-most-food/
  31. Chuvashev, A. N., & Chuprakov, A. I. (2020). Analysis of the use of methanol with a pilot portion diesel fuel. IOP Conference Series: Materials Science and Engineering, 062089. https://doi.org/10.1088/1757-899x/862/6/062089
  32. Civilsdaily. (2017). Part 2 | Important Food Crops (Rice, Wheat, Maize, Millets, Pulses and Barley) and Horticultural Crops –. Civilsdaily. Retrieved October 21, 2021, from https://www.civilsdaily.com/important-food-crops-rice-wheat-maize-millets-pulses-geographical-conditions-producing-areas-important-varieties-horticulture-fruits-vegetables/
  33. Cloin, J., & Vaitilingom, G. (2008). Sustainable biofuels in the Pacific - an overview, Pacific regional biofuel workshop, November 2008, Nadi, Fiji Islands. https://agritrop.cirad.fr/570730/1/document_570730.pdf
  34. Covey, G., Rainy, T. J., & Shore D. (2006). The potential for bagasse pulping in Australia. Appita J., 59 (1), 17-22
  35. Craker, L. E. (2009). A Guide to Medicinal Plants—An Illustrated, Scientific and Medicinal Approach, by Koh Hwee Ling, Chua Tung Kian, and Tan Chay Hoon. Journal of Herbs, Spices & Medicinal Plants, 15(3), 290. https://doi.org/10.1080/10496470903379027
  36. de Souza, R. B., de Menezes, J. A. S., de Souza, R. D. F. R., Dutra, E. D., & de Morais Jr, M. A. (2014). Mineral Composition of the Sugarcane Juice and Its Influence on the Ethanol Fermentation. Applied Biochemistry and Biotechnology, 175(1), 209–222. https://doi.org/10.1007/s12010-014-1258-7
  37. Department of Business, Economic, Development and Tourism (DBEDT). (2019). Hawaii Energy facts & Figures, Hawaii State Energy Office, DBEDT.'s Monthly Energy Trends. http://dbedt.hawaii.gov/economic/energy-trends-2/
  38. Devi, L., Ptasinski, K. J., Janssen, F. J., van Paasen, S. V., Bergman, P. C., & Kiel, J. H. (2005). Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renewable Energy, 30(4), 565–587. https://doi.org/10.1016/j.renene.2004.07.014
  39. Dweck, A. C., & Meadows, T. (2002). Tamanu (Calophyllum inophyllum) - the African, Asian, Polynesian and Pacific Panacea. International Journal of Cosmetic Science, 24(6), 341–348. https://doi.org/10.1046/j.1467-2494.2002.00160.x
  40. Ebrahim, M. K., Zingsheim, O., El-Shourbagy, M. N., Moore, P. H., & Komor, E. (1998). Growth and sugar storage in sugarcane grown at temperatures below and above optimum. Journal of Plant Physiology, 153(5–6), 593–602. https://doi.org/10.1016/s0176-1617(98)80209-5
  41. El Hage, R., Khalaf, Y., Lacoste, C., Nakhl, M., Lacroix, P., & Bergeret, A. (2019). A flame retarded chitosan binder for insulating miscanthus/recycled textile fibers reinforced biocomposites. J. Appl. Polym. Sci. 136, 47306. https://doi.org/10.1002/app.47306
  42. Eschenhagen, A., Raj, M., Rodrigo, N., Zamora, A., Labonne, L., Evon, P., & Welemane, H. (2019). Investigation of Miscanthus and Sunflower Stalk Fiber-Reinforced Composites for Insulation Applications. Advances in Civil Engineering, 2019, 1–7. https://doi.org/10.1155/2019/9328087
  43. Farmer, J. (2013). Trees in Paradise: A California History. W. W. Norton & Company, Inc.: New York
  44. Federation of Oils, Seeds & Fats Associations. (2014). https://www.fosfa.org/content/uploads/2014/11/Jatropha.pdf
  45. Field, C. B., Campbell, J. E., & Lobell, D. B. (2007). Biomass energy: the scale of the potential resource. Trends Ecol. Evol., 23, 65-72. https://doi.org/10.1016/j.tree.2007.12.001
  46. Folaranmi, J. (2013). Production of Biodiesel (B100) from Jatropha Oil Using Sodium Hydroxide as Catalyst. Journal of Petroleum Engineering, 2013, 1–6. https://doi.org/10.1155/2013/956479
  47. Food and Agriculture Organization of the United Nations (FAO) (2015). Global Initiative on Food Loss and Waste Reduction, Rome. http://www.fao.org/3/a-i4068e.pdf
  48. Food and Agriculture Organization. (2009). The State of Food and Agriculture 2009. https://www.fao.org/3/i0680e/i0680e00.htm
  49. Food and Agriculture Organization. (2012). FAO Statistical Yearbook 2012. https://www.fao.org/3/i2490e/i2490e00.htm
  50. Food Waste Policy. (2014). A food waste and yard waste plan for Hong Kong 2014-2022. https://www.enb.gov.hk/en/files/FoodWastePolicyEng.pdf
  51. Francis, G., Edinger, R., & Becker, K. (2005). A concept for simultaneous wasteland reclamation, fuel production and socio-economic development in degraded areas in India: Need, potential and perspectives of Jatropha plantations. Nat. Resour. Forum, 29, 12-24. https://doi.org/10.1111/j.1477-8947.2005.00109.x
  52. Friday, J. B., & Okano, D. (2006). Calophyllum inophyllum (Kamani). In Traditional Trees of Pacific Islands: Their Culture, Environment, and Use; Elevitch, C. R., Ed.; Permanent Agriculture Resources: Holualoa, HI
  53. Fu, J., Turn S. Q., Takushi B. M., & Kawamata, C. L. (2016). Storage and oxidation stabilities of biodiesel derived from waste cooking oil. Fuel, 167, 89-97. https://doi.org/10.1016/j.fuel.2015.11.041
  54. Fulton, L., Howes, T., & Hardy J. (2004). Biofuels for Transport: an International Perspective. International Energy Agency, Paris, France. https://www.cti2000.it/Bionett/All-2004-004%20IEA%20biofuels%20report.pdf
  55. Ghatak, H.R. (2011). Biorefineries from the perspective of sustainability: Feedstocks, products, and processes. Renew. Sustain. Energy Rev., 15, 4042–4052. https://doi.org/10.1016/j.rser.2011.07.034
  56. Gledhill, D. (2008). The Names of Plants, 4th ed.; Cambridge University Press
  57. Gohawaii. (2021). the Hawaiin islands; weather. https://www.gohawaii.com/trip-planning/weather (accessed 18/6/2021)
  58. Gour, V. K. (2006). Production Practices Including Post-Harvest Management of Jatropha curcas. In Proceedings of the Biodiesel Conference Toward Energy Independence - Focus of Jatropha, New Delhi, India, 2006; Singh, B., Swaminathan, R., Ponraj, V., Eds., pp 223-351
  59. Guna, V., Ilangovan, M., Hu, C., Venkatesh, K., & Reddy, N., (2019). Valorization of sugarcane bagasse by developing completely biodegradable composites for industrial applications. Ind. Crops Prod. 131, 25–31. https://doi.org/10.1016/j.indcrop.2019.01.011
  60. Hakimi, M., Khalilullah, Goembira, F., & Ilham, Z. (2017). Engine-Compatible Biodiesel from Leucaena leucocephala Seed Oil. Journal of the Society of Automotive Engineers Malaysia, 1(2). Retrieved from http://jsaem.saemalaysia.org.my/index.php/jsaem/article/view/48
  61. Hanaki, K., & Portugal-Pereira J. (2018). The Effect of Biofuel Production on Greenhouse Gas Emission Reductions. In: Takeuchi K., Shiroyama H., Saito O., Matsuura M. (eds) Biofuels and Sustainability. Science for Sustainable Societies. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54895-9_6
  62. Harper, R. J., Sochacki, S. J., Smettem, K. R. J., & Robinson, N. (2010). Bioenergy Feedstock Potential from Short-Rotation Woody Crops in a Dryland Environment†. Energy & Fuels, 24(1), 225–231. https://doi.org/10.1021/ef9005687
  63. Hawaii Clean Energy Initiative. (2011). Hawaii State Energy Office. Retrieved 21–10-21, from http://energy.hawaii.gov/testbeds-initiatives/hcei
  64. Hawaii Natural Energy Institute. (2019). Hawaii energy and environmental technologies initiative, Biofuel’s crop assessment. Office of Naval Research. https://www.hnei.hawaii.edu/wp-content/uploads/Biofuels-Crop-Assessment.pdf
  65. Heller, J. (1996). Physic Nut. Jatropha curcas L. Promoting the Conservation and Use of Underutilized and Neglected Crops. 1. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, 66 p
  66. Henning, R. K. (2009). The Jatropha Book. The Jatropha System: An integrated approach of rural development. https://en.calameo.com/read/0013656329b4f85182a36
  67. Hinchee, M., Rottmann, W., Mullinax, L., Zhang, C., Chang, S., Cunningham, M., Pearson, L., & Nehra, N. (2009). Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cellular & Developmental Biology - Plant, 45(6), 619–629. https://doi.org/10.1007/s11627-009-9235-5
  68. Hoogeveen, J., Faurès, J. M., & van de Giessen, N. (2009). Increased biofuel production in the coming decade: to what extent will it affect global freshwater resources? Irrigation and Drainage, 58(S1), S148–S160. https://doi.org/10.1002/ird.479
  69. Hunde, T., Mamushet, D., Duguma, D., Gizachew, B., & Teketay, D. (2003). Growth and form of provenances ofEucalyptus salignaat Wondo Genet, southern Ethiopia. Australian Forestry, 66(3), 213–216. https://doi.org/10.1080/00049158.2003.10674914
  70. IFCO. (2020). Food waste by countries: Who`s biggest waster. https://www.ifco.com/countries-with-the-least-and-most-food-waste/
  71. Ilham, Z., Hamidon, H., Rosji, N. A., Ramli, N., & Osman, N. (2015). Extraction and Quantification of Toxic Compound Mimosine from Leucaena Leucocephala Leaves. Procedia Chemistry, 16, 164–170. https://doi.org/10.1016/j.proche.2015.12.029
  72. International Energy Agency (IEA). (2017). Bioenergy and Biofuels. https://www.iea.org/topics/renewables/bioenergy/
  73. Investancia, A. I. T. (2017). More on pongamia -. Investancia. https://investancia.com/what-is-pongamia/
  74. Ioannidis, A., Chalvatzis, K. J., Li, X., Notton, G., & Stephanides, P. (2019). The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands. Renewable Energy, 143, 440–452. https://doi.org/10.1016/j.renene.2019.04.155
  75. Jamilatun, S., Budhijanto, B., Rochmadi, R., Yuliestyan, A., Hadiyanto, H., & Budiman, A. (2019). Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues. International Journal of Renewable Energy Development, 8(2), 133. https://doi.org/10.14710/ijred.8.2.133-140
  76. Jardé, E., Mansuy, L., & Faure, P. (2005). Organic markers in the lipidic fraction of sewage sludges. Water Research, 39(7), 1215–1232. https://doi.org/10.1016/j.watres.2004.12.024
  77. Jayed, M., Masjuki, H., Saidur, R., Kalam, M., & Jahirul, M. (2009). Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia. Renewable and Sustainable Energy Reviews, 13(9), 2452–2462. https://doi.org/10.1016/j.rser.2009.06.023
  78. Jazie, A. A. (2019). DBSA-Catalyzed Sewage Sludge Conversion into Biodiesel in a CSTR: RSM Optimization and RTD Study. Journal of Engineering and Technological Sciences, 51(4), 537. https://doi.org/10.5614/j.eng.technol.sci.2019.51.4.6
  79. Jeswani, H. K., Chilvers, A., & Azapagic, A. (2020). Environmental sustainability of biofuels: a review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2243), 20200351. https://doi.org/10.1098/rspa.2020.0351
  80. Jingura, R. M., & Kamusoko, R. (2015). A multi-factor evaluation of Jatropha as a feedstock for biofuels: the case of sub-Saharan Africa. Biofuel Research Journal, 2(3), 254–257. https://doi.org/10.18331/brj2015.2.3.3
  81. Jongh, J. A., van der Putten, E., & van der Putten, E. (2010). The Jatropha Handbook. FACT Foundation. https://en.calameo.com/read/001365632ebcc58ed3d51
  82. Jongschaap, R., Corre, W., Bindraban, P., & Brandenburg, W. (2007). Claims and facts on Jatropha curcas L. Global Jatropha curcas Evaluation, Breeding and Propagation Programme; Report 158; Plant Research International B.V.: Wageningen, The Netherlands
  83. Jung, Y. (2021). Hawaii Has A Lot Of Agricultural Land. Very Little Of It Is Used For Growing Food. Honolulu Civil Beat. https://www.civilbeat.org/2021/02/hawaii-grown-maps/ (accessed 10/6/2021)
  84. Kargbo, D. M. (2010). Biodiesel Production from Municipal Sewage Sludges. Energy & Fuels, 24(5), 2791–2794. https://doi.org/10.1021/ef1001106
  85. Karmee, S. K. (2016). Liquid biofuels from food waste: Current trends, prospect and limitation. Renewable and Sustainable Energy Reviews, 53, 945–953. https://doi.org/10.1016/j.rser.2015.09.041
  86. Karmee, S. K., & Lin, C. S. K. (2014a). Valorisation of food waste to biofuel: current trends and technological challenges. Sustainable Chemical Processes, 2(1). https://doi.org/10.1186/s40508-014-0022-1
  87. Karmee, S. K., & Lin, C. S. K. (2014b). Lipids from food waste as feedstock for biodiesel production: Case Hong Kong. Lipid Technology, 26(9), 206–209. https://doi.org/10.1002/lite.201400044
  88. Karp, A., & Shield, I. (2008). Bioenergy from plants and the sustainable yield challenge. New Phytologist, 179(1), 15–32. https://doi.org/10.1111/j.1469-8137.2008.02432.x
  89. Khedari, J., Charoenvai, S., & Hirunlabh, J. (2003). New insulating particleboards from durian peel and coconut coir. Building and Environment, 38(3), 435–441. https://doi.org/10.1016/s0360-1323(02)00030-6
  90. Kibazohi, O., & Sangwan, R. (2011). Vegetable oil production potential from Jatropha curcas, Croton megalocarpus, Aleurites moluccana, Moringa oleifera and Pachira glabra: Assessment of renewable energy resources for bio-energy production in Africa. Biomass and Bioenergy, 35(3), 1352–1356. https://doi.org/10.1016/j.biombioe.2010.12.048
  91. Kim, M., & Day, D. F. (2010). Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of Industrial Microbiology & Biotechnology, 38(7), 803–807. https://doi.org/10.1007/s10295-010-0812-8
  92. Kimaro, A. A. (2009). Sequential Agroforestry Systems for Improving Fuelwood Supply and Crop Yield in Semi-Arid Tanzania. Doctoral Thesis. University of Toronto, Toronto, Canada. https://tspace.library.utoronto.ca/bitstream/1807/19283/1/Kimaro_Anthony_A_200911_PhD_Thesis.pdf
  93. Kindt, R., Lillesø, J. B., & van Breugel, P. (2007). Comparisons between original and current composition of indigenous tree species around Mount Kenya. African Journal of Ecology, 45(4), 633–644. https://doi.org/10.1111/j.1365-2028.2007.00787.x
  94. Kinoshita, C. & Zhou, J. (1999). "Siting Evaluation for Biomass-Ethanol Production in Hawai'i," Prepared for National Renewable Energy Laboratory, Department of Biosystems Engineering, University of Hawai'i, Honolulu, Hawai'I. https://www.hawaiicountycdp.info/hamakua-cdp/about-the-hamakua-cdp-planning-area/hamakua-industries-resources-research/DBET%20bioethanol%201999.pdf/at_download/file
  95. Kituyi, E., Marufu, L., O. Wandiga, S., O. Jumba, I., O. Andreae, M., & Helas, G. (2001). Biofuel availability and domestic use patterns in Kenya. Biomass and Bioenergy, 20(2), 71–82. https://doi.org/10.1016/s0961-9534(00)00071-4
  96. Klein, B. C., Chagas, M. F., Junqueira, T. L., Rezende, M. C. A. F., Cardoso, T. D. F., Cavalett, O., & Bonomi, A. (2018). Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Applied Energy, 209, 290–305. https://doi.org/10.1016/j.apenergy.2017.10.079
  97. Knothe, G., de Castro, M. E. G., & Razon, L. F. (2015). Methyl Esters (Biodiesel) from and Fatty Acid Profile of Gliricidia sepium Seed Oil. Journal of the American Oil Chemists’ Society, 92(5), 769–775. https://doi.org/10.1007/s11746-015-2634-3
  98. Koh, L. P., & Ghazoul, J. (2008). Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biological Conservation, 141(10), 2450–2460. https://doi.org/10.1016/j.biocon.2008.08.005
  99. Kozacek, C. (2017). No room for waste: Honolulu`s sludge plant points toward more sustainable urban development. https://www.newsecuritybeat.org/2017/06/room-waste-honolulus-sludge-plant-points-sustainable-urban-development-2/
  100. Kumar Tiwari, A., Kumar, A., & Raheman, H. (2007). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass and Bioenergy, 31(8), 569–575. https://doi.org/10.1016/j.biombioe.2007.03.003
  101. Kumar, A., & Sharma, S. (2008). An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Industrial Crops and Products, 28(1), 1–10. https://doi.org/10.1016/j.indcrop.2008.01.001
  102. Kumar, A., Eskridge, K., Jones, D. D., & Hanna, M. A. (2009). Steam–air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature. Bioresource Technology, 100(6), 2062–2068. https://doi.org/10.1016/j.biortech.2008.10.011
  103. Kumar, N. S., & Simon, N. (2016). In vitro antibacterial activity and phytochemical analysis of Gliricidia sepium (L.) leaf extracts. Journal of Pharmacognosy and Phytochemistry, 5 (2), 131-133. https://www.phytojournal.com/archives/2016/vol5issue2/PartB/5-1-55.pdf
  104. La Mantia, F.P., & Morreale, M. (2011). Green composites: a brief review. Compos. Part A Appl. Sci. Manuf. 42, 579–588. https://doi.org/10.1016/j.compositesa.2011.01.017
  105. Larson, E. D., Jin, H., & Celik, F. E. (2009). Large-scale gasification-based coproduction of fuels and electricity from switchgrass. Biofuels, Bioproducts and Biorefining, 3(2), 174–194. https://doi.org/10.1002/bbb.137
  106. Leal, M. R. (2007). The potential of sugarcane as an energy source. Proc. Int. Soc. Sugar Cane Technol., 26, 23-34. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1049.4192&rep=rep1&type=pdf
  107. Likhanov, V. A., & Lopatin, O. P. (2020). Alcohol biofuels for internal combustion engine. IOP Conference Series: Earth and Environmental Science, 062041. https://doi.org/10.1088/1755-1315/548/6/062041
  108. Market Data Forecast. (2020). Biodiesel Market Size, Share & Trends | 2021 - 2026. Market Data Forecast. https://www.marketdataforecast.com/market-reports/biodiesel-market (accessed 1/6/2021)
  109. Matsuoka, S., Bressiani, J., Maccheroni, W., & Fouto, I. (2015). Sugarcane bioenergy. In Sugarcane: Agricultural Production, Bioenergy and Ethanol; Elsevier Inc.: Amsterdam, The Netherlands, pp. 383–405
  110. Matthew, K. Loke., & James, M. (2019). Reducing Food Waste in Hawai‘i: A Primer. College of Tropical Agriculture and Human Resources. Published. https://gms.ctahr.hawaii.edu/gs/handler/getmedia.ashx?moid=65942&dt=3&g=12
  111. Matu, E. N., & van Staden, J. (2003). Antibacterial and anti-inflammatory activities of some plants used for medicinal purposes in Kenya. Journal of Ethnopharmacology, 87(1), 35–41. https://doi.org/10.1016/s0378-8741(03)00107-7
  112. McAloon, A., F. Taylor., W. Yee., K. & Ibsen., R. Wooley. (2000). Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks. US Department of Agriculture, National Renewable Energy Laboratory, NREL/TP-580- 28893. https://doi.org/10.2172/766198
  113. Meena D. V., Ariharan V., & Nagendra P. (2013). Nutritive Value and Potential Uses of Leucaena leucocephala as Biofuel-A Mini Review. Res. J. Pharm., Biol. Chem. Sci., 4 (1), 515-521
  114. Misra, R., & Murthy, M. (2010). Straight vegetable oils usage in a compression ignition engine—A review. Renewable and Sustainable Energy Reviews, 14(9), 3005–3013. https://doi.org/10.1016/j.rser.2010.06.010
  115. Mohibbeazam, M., Waris, A., & Nahar, N. (2005). Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy, 29, 293-302. https://doi.org/10.1016/j.biombioe.2005.05.001
  116. Monti, A., Fazio, S., Lychnaras, V., Soldatos, P., & Venturi, G. (2007). A full economic analysis of switchgrass under different scenarios in Italy estimated by BEE model. Biomass and Bioenergy, 31(4), 177–185. https://doi.org/10.1016/j.biombioe.2006.09.001
  117. Morgan, T. J., Turn, S. Q., Sun, N., & George, A. (2016). Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions. PLOS ONE, 11(3), e0151368. https://doi.org/10.1371/journal.pone.0151368
  118. Morgan, T. J., Youkhana, A., Turn, S. Q., Ogoshi, R., & Garcia-Pérez, M. (2019). Review of Biomass Resources and Conversion Technologies for Alternative Jet Fuel Production in Hawai’i and Tropical Regions. Energy & Fuels, 33(4), 2699–2762. https://doi.org/10.1021/acs.energyfuels.8b03001
  119. Morgan, T. J., Youkhana, A., Turn, S. Q., Ogoshi, R., & Garcia-Pérez, M. (2019). Review of Biomass Resources and Conversion Technologies for Alternative Jet Fuel Production in Hawai’i and Tropical Regions. Energy & Fuels, 33(4), 2699–2762. https://doi.org/10.1021/acs.energyfuels.8b03001
  120. National Geographic Society. (2012). biomass energy. https://www.nationalgeographic.org/encyclopedia/biomass-energy/
  121. Normile, D. (1997). Yangtze Seen as Earliest Rice Site. Science, 275(5298), 309. https://doi.org/10.1126/science.275.5298.309
  122. Ofimagazine. (2015). https://www.ofimagazine.com/content-images/news/Pongamia.pdf
  123. Onlamnao, K., Phromphithak, S., & Tippayawong, N. (2020). Generating Organic Liquid Products from Catalytic Cracking of Used Cooking Oil over Mechanically Mixed Catalysts. International Journal of Renewable Energy Development, 9(2), 159-166. https://doi.org/10.14710/ijred.9.2.159-166
  124. Openshaw, K. (2000). A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass and Bioenergy, 19(1), 1–15. https://doi.org/10.1016/s0961-9534(00)00019-2
  125. Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Anthony, S. (2009). Agroforestree Database: A Tree Reference and Selection Guide, version 4.0 https://www.feedipedia.org/node/1650
  126. Ozturk, A. B., Al-Shorgani, N. K. N., Cheng, S., Arasoglu, T., Gulen, J., Habaki, H., Egashira, R., Kalil, M. S., Yusoff, W. M. W., & Cross, J. S. (2020). Two-step fermentation of cooked rice with Aspergillus oryzae and Clostridium acetobutylicum YM1 for biobutanol production. Biofuels, 1–7. https://doi.org/10.1080/17597269.2020.1813000
  127. Palma, R. A., & Carandang, W. M. (2014). Carbon Sequestration and Climate Change Impact on the Yield of Bagras (Eucalyptus deglupta Blume) in Bagras-Corn Boundary Planting Agroforestry System in Misamis Oriental and Bukidnon, Philippines. J. Environ. Sci. Manage, 17 (2), 29-37. https://ovcre.uplb.edu.ph/journals-uplb/index.php/JESAM/article/view/185/171
  128. Parra, C. R., Corrêa-Guimarães, A., Navas-Gracia, L. M., Narváez C., R. A., Rivadeneira, D., Rodríguez, D., & Ramirez, A. D. (2020). Bioenergy on Islands: An Environmental Comparison of Continental Palm Oil vs. Local Waste Cooking Oil for Electricity Generation. Applied Sciences, 10(11), 3806. https://doi.org/10.3390/app10113806
  129. Parthasarathy, P., & Narayanan, K. S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review. Renewable Energy, 66, 570–579. https://doi.org/10.1016/j.renene.2013.12.025
  130. Peteet, M. D. (2006). Biodiesel Crop Implementation in Hawaii. H.A.R.C., The State of Hawaii, Department of Agriculture. http://www.hawaiiag.org/hdoa/pdf/biodiesel20report20revised.pdf
  131. Pham, T. P. T., Kaushik, R., Parshetti, G. K., Mahmood, R., & Balasubramanian, R. (2015). Food waste-to-energy conversion technologies: Current status and future directions. Waste Management, 38, 399–408. https://doi.org/10.1016/j.wasman.2014.12.004
  132. Pickett, J., Anderson, D., Bowles, D., Bridgwater, T., Jarvis, P., Mortimer, N., Poliakoff, M., & Woods, J. (2008). Sustainable Biofuels: Prospects and Challenges. The Royal Society, London, UK. https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2008/7980.pdf
  133. Plants for a Future. (2021). Croton tiglium Croton Oil Plant. Croton, Purging croton. PFAF Plant Database. Https://Pfaf.Org/USER/Plant.Aspx?LatinName=Croton+tiglium. Retrieved October 20, 2021, from
  134. Prasad, S.S. & Singh, A. (2020). Economic feasibility of biodiesel production from Pongamia Oil on the Island of Vanua Levu. SN Appl. Sci. 2, 1086. https://doi.org/10.1007/s42452-020-2883-0
  135. Precedence Research. (2021). Biofuels Market Size Worth Around US$ 307.01 Billion by 2030. https://www.globenewswire.com/en/search/organization/Precedence%2520Research
  136. Proskurina, S., Junginger, M., Heinimö, J., Tekinel, B. & Vakkilainen, E. (2019). Global biomass trade for energy— Part 2: Production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels, Bioprod. Bioref., 13: 371-387. https://doi.org/10.1002/bbb.1858
  137. Putri, A.P. & Gheewala, H. S. (2015). Renewability assessment of kamani (calophyllum inophyllum) biodiesel in Indonesia. Journal of sustainable energy & environment. https://www.thaiscience.info/Journals/Article/JOSE/10970650.pdf
  138. Radich, A. (2004). "Biodiesel Performance, Costs and Use," Energy Information Administration, http://www.eia.doe.gov/oiaf/analysispaper/biodiesel/
  139. Rainbolt, C., & Gilbert, R. (2008) Production of biofuel crops in Florida: Sugarcane/Energycane SS-AGR-298. http://edis.ifas.ufl.edu/ag303
  140. Raja, S. A., Smart, D. S. R., & Lee, C. L. R. (2011). Biodiesel production from jatropha oil and its characterization. Chem. Sci., 1, 81-87. https://www.ijert.org/research/biodiesel-production-from-jatropha-oil-and-its-characterization-on-diesel-engine-IJERTV2IS110380.pdf
  141. Rajak, R. C., Jacob, S., & Kim, B. S. (2020). A holistic zero waste biorefinery approach for macroalgal biomass utilization: A review. Science of The Total Environment, 716, 137067. https://doi.org/10.1016/j.scitotenv.2020.137067
  142. Ramos, A., Monteiro, E., Silva, V., & Rouboa, A. (2018). Co-gasification and recent developments on waste-to-energy conversion: A review. Renewable and Sustainable Energy Reviews, 81, 380–398. https://doi.org/10.1016/j.rser.2017.07.025
  143. Repeating Island. (2012). https://repeatingislands.com/2012/05/29/small-island-states-seek-to-end-dependence-on-imported-oil/
  144. Research & Markets. (2020). Global Bioethanol Market (2020 to 2025). https://www.globenewswire.com/en/search/organization/Research%2520and%2520Markets
  145. Rice Straw Management. (2019). International Rice Research Institute. https://www.irri.org/rice-straw-management
  146. Salveybee. (2016). What is Kamani oil. https://sites.google.com/site/salveybee/what-is-kamani-oil
  147. Sandhu, H. S., & Gilbert, R. (2014). Production of Biofuel Crops in Florida: Sugarcane/Energy Cane; UF/IFAS Extension, SS-AGR- 298. https://edis.ifas.ufl.edu/pdf/AG/AG30300.pdf
  148. Sansaniwal, S., Pal, K., Rosen, M., & Tyagi, S. (2017b). Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and Sustainable Energy Reviews, 72, 363–384. https://doi.org/10.1016/j.rser.2017.01.038
  149. Sansaniwal, S., Rosen, M., & Tyagi, S. (2017a). Global challenges in the sustainable development of biomass gasification: An overview. Renewable and Sustainable Energy Reviews, 80, 23–43. https://doi.org/10.1016/j.rser.2017.05.215
  150. Scott, P. T., Pregelj, L., Chen, N., Hadler, J. S., Djordjevic, M. A., & Gresshoff, P. M. (2008). Pongamia pinnata: An Untapped Resource for the Biofuels Industry of the Future. BioEnergy Research, 1(1), 2–11. https://doi.org/10.1007/s12155-008-9003-0
  151. Shanmugapriya, C. Y., Jothy, S. L., & Sasidharan, S. (2016). Calophyllum inophyllum: A Medical Plant with Multiple Curative Values. Res. J. Pharm., Biol. Chem. Sci., 7 (4), 1446
  152. Sica, P. (2021, February 1). Sugarcane Breeding for Enhanced Fiber and Its Impacts on Industrial Processes. IntechOpen. https://www.intechopen.com/chapters/75041
  153. Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., Shah, N., Anthony, E. J., & Fennell, P. S. (2016). An overview of advances in biomass gasification. Energy & Environmental Science, 9(10), 2939–2977. https://doi.org/10.1039/c6ee00935b
  154. Sikarwar, V. S., Zhao, M., Fennell, P. S., Shah, N., & Anthony, E. J. (2017). Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 61, 189–248. https://doi.org/10.1016/j.pecs.2017.04.001
  155. Simmons, B. A., Loque, D., & Blanch, H. W. (2008). Next-generation biomass feedstocks for biofuel production. Genome Biology, 9(12), 242. https://doi.org/10.1186/gb-2008-9-12-242
  156. Simons, A. J., & Stewart, J. L. (1994). Forage Tree Legumes in Tropical Agriculture (Gliricidia sepium, a Multipurpose Forage Tree Legume); C.A.B. International: Wallingford, Oxfordshire, U.K., pp 30-48
  157. Smallwood, B. (2016). In Hawaii, We Waste More Than A Fourth Of All Our Food. Honolulu Civil Beat. https://www.civilbeat.org/2016/05/food-in-hawaii-how-much-are-we-wasting/
  158. Sochacki, S. J., Harper, R. J., Smettem, K. R. J., Dell, B., & W.U. H. (2013). Evaluating a sustainability index for nutrients in a short rotation energy cropping system. G.C.B. Bioenergy, 5, 315-326
  159. Spinosa, L. (2015). Wastewater Sludge: A Global Overview of the Current Status and Future Prospects. Water Intelligence Online, 6(0), 9781780402154. https://doi.org/10.2166/9781780402154
  160. Sreedevi, T. K., Wani, S. P., Osman, M. & Singh, S. N. (2009). Participatory research and development to evaluate Pongamia seed cake as source of plant nutrient in integrated watershed management. Journal of SAT Agricultural Research, 7. pp. 1-13. ISSN 0973-3094
  161. Stape, J. L., Binkley, D., & Ryan, M. G. (2008). Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations. Forest Ecology and Management, 255(3–4), 920–930. https://doi.org/10.1016/j.foreco.2007.09.085
  162. Statista. (2021a). Global biofuel production by select country 2019. https://www.statista.com/statistics/274168/biofuel-production-in-leading-countries-in-oil-equivalent/ (accessed 1/6/2021)
  163. Statista. (2021b). Global biodiesel production by country 2019. https://www.statista.com/statistics/271472/biodiesel-production-in-selected-countries/#:%7E:text=The%20United%20States%20and%20Brazil,gallons%20of%20biodiesel%20by%202025 (accessed 1/6/2021)
  164. Sunil, N., Varaprasad, K., Sivaraj, N., Suresh Kumar, T., Abraham, B., & Prasad, R. (2008). Assessing Jatropha curcas L. germplasm in-situ—A case study. Biomass and Bioenergy, 32(3), 198–202. https://doi.org/10.1016/j.biombioe.2007.09.003
  165. Sutton, D., Kelleher, B., & Ross, J. R. (2001). Review of literature on catalysts for biomass gasification. Fuel Processing Technology, 73(3), 155–173. https://doi.org/10.1016/s0378-3820(01)00208-9
  166. Teixeira, E., Mateus, R., Camões, A., & Branco, F. (2019). Quality and durability properties and life-cycle assessment of high volume biomass fly ash mortar. Construction and Building Materials, 197, 195–207. https://doi.org/10.1016/j.conbuildmat.2018.11.173
  167. Thammasittirong, S. N. R., Chatwachirawong, P., Chamduang, T., & Thammasittirong, A. (2017). Evaluation of ethanol production from sugar and lignocellulosic part of energy cane. Industrial Crops and Products, 108, 598–603. https://doi.org/10.1016/j.indcrop.2017.07.023
  168. The Kohala Center. (2009). Biofuels in Hawaii; A case study of Hamakua. https://kohalacenter.org/archive/pdf/Biofuels.pdf
  169. Tijmensen, M. (2002). Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass and Bioenergy, 23(2), 129–152. https://doi.org/10.1016/s0961-9534(02)00037-5
  170. Tikkoo, A., Yadav, S., & Kaushik, N. (2013). Effect of irrigation, nitrogen and potassium on seed yield and oil content of Jatropha curcas in coarse textured soils of northwest India. Soil and Tillage Research, 134, 142–146. https://doi.org/10.1016/j.still.2013.08.001
  171. Tripathi, N., Hills, C. D., Singh, R. S., & Atkinson, C. J. (2019). Biomass waste utilisation in low-carbon products: harnessing a major potential resource. Npj Climate and Atmospheric Science, 2(1). https://doi.org/10.1038/s41612-019-0093-5
  172. Tudsri, S., Chotchutima, S., Nakamanee, K., & Kangwansaichol, K. (2019). Dual use of leucaena for bioenergy and animal feed in Thailand. Tropical Grasslands-Forrajes Tropicales, 7(2), 193–199. https://doi.org/10.17138/tgft(7)193-199
  173. Ugalde, L., & Perez, O. (2001). Mean Annual Volume Increment of Selected Industrial Forest Plantation Species; Forest Plantation Thematic Papers, Working Paper 1; Food and Agriculture Organization (F.A.O.) of the United Nations, Forest Resources Development Service, Forest Resources Division: Rome, Italy. https://www.fao.org/3/ac121e/ac121e.pdf
  174. U.S. Department of Agriculture. (2021). Agricultural Land Use Baseline Study Updated. https://hdoa.hawaii.gov/blog/main/nr21-13aglandusestudy2/
  175. U.S. Department of Energy. (2015). (Energy Efficiency and Renewable Energy). https://www.energy.gov/sites/prod/files/2015/10/f27/hawaii_biofuels_benefits.pdf
  176. U.S. Energy Information Administration. (2020). Rankings Average Retail Price of Electricity. https://www.eia.gov/state/rankings/#/series/31%20(last%20accessed%205/17/17);%20natural%20gas:%20http://www.eia.gov/state/rankings/
  177. U.S. Environmental Protection Agency. (1993). United States Environmental Protection Agency, "US Consumer Product Safety Commission," The Inside Story: A Guide to Indoor Air Quality, EPA-402-R-93-013
  178. U.S. Environmental Protection Agency. (2021). Links and Resources About Food Recovery in Honolulu. US EPA. https://www.epa.gov/sustainable-management-food/links-and-resources-about-food-recovery-honolulu
  179. U.S. Environmental Protection Agency. (2016). https://www.epa.gov/sites/production/files/2016-11/documents/2014_smmfactsheet_508.pdf
  180. Uslu, A., Faaij, A. P., & Bergman, P. (2008). Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy, 33(8), 1206–1223. https://doi.org/10.1016/j.energy.2008.03.007
  181. Usman, K., Khan, S., Ghulam, S., Khan, M. U., Khan, N., Khan, M. A., & Khalil, S. K. (2012). Sewage Sludge: An Important Biological Resource for Sustainable Agriculture and Its Environmental Implications. American Journal of Plant Sciences, 03(12), 1708–1721. https://doi.org/10.4236/ajps.2012.312209
  182. Van der Hagen, T. R. (2012). The Application of Bio Jet Fuels until 2050: Scenarios for Future Developments. Master Thesis, Utrecht University, Utrecht, The Netherlands. https://dspace.library.uu.nl/bitstream/handle/1874/237085/Tim%20vd%20Hagen%20Thesis200312%20FINAL.pdf;sequence=1
  183. Vaughan, D. A., & Morishima, H. (2003). Biosystematics of the genus Oryza. In Rice: Origin, History, Technology, and Production; Smith, C. W., Dilday, R. H., Eds.; John Wiley and Sons Inc.: Hoboken, NJ, pp 27-65
  184. Verma, P., Sharma, M. P., & Dwivedi, G. (2016). Potential use of eucalyptus biodiesel in compressed ignition engine. Egyptian Journal of Petroleum, 25(1), 91–95. https://doi.org/10.1016/j.ejpe.2015.03.008
  185. Walter, A., Dolzan, P., Quilodrán, O., de Oliveira, J. G., da Silva, C., Piacente, F., & Segerstedt, A. (2011). Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects. Energy Policy, 39(10), 5703–5716. https://doi.org/10.1016/j.enpol.2010.07.043
  186. Wang, W. C., & Tao, L. (2016). Bio-jet fuel conversion technologies. Renewable and Sustainable Energy Reviews, 53, 801–822. https://doi.org/10.1016/j.rser.2015.09.016
  187. Williams, R. H., Larson, E. D., Katofsky, R. E., & Chen, J. (1995). Methanol and hydrogen from biomass for transportation. Energy for Sustainable Development, 1(5), 18–34. https://doi.org/10.1016/s0973-0826(08)60083-6
  188. Wu, Dawei, Roskilly Anthony P. & Yu Hongdong. (2013). Croton megalocarpus oil-fired micro-trigeneration prototype for remote and self-contained applications: experimental assessment of its performance and gaseous and particulate emissions Interface Focus. https://doi.org/10.1098/rsfs.2012.0041
  189. Wu, R., Beutler, J., & Baxter, L. L. (2020). Non-catalytic ash effect on char reactivity. Applied Energy, 260, 114358. https://doi.org/10.1016/j.apenergy.2019.114358
  190. Youkhana, A. H., & Idol, T. W. (2015). Leucaena-KX2 mulch additions increase growth, yield and soil C and N in a managed full-sun coffee system in Hawaii. Agroforestry Systems, 90(2), 325–337. https://doi.org/10.1007/s10457-015-9857-z
  191. Zafar, S. (2005). Biomass Resources from Rice Industry. Bioenergy Consult. http://www.bioenergyconsult.com/biomass-resources-rice-industry
  192. Zahan, K.A., & Kano, M. (2018). Biodiesel Production from Palm Oil, Its Byproducts, and Mill Effluent: A Review. Energies. 11(8):2132. https://doi.org/10.3390/en11082132

Last update:

  1. Socio- and techno-economic analyses of biodiesel production from sewage sludge in Tokyo, Japan

    Muhammad Usman, Shuo Cheng, Sasipa Boonyubol, Muhammad Aziz, Jeffrey S. Cross. Journal of Cleaner Production, 425 , 2023. doi: 10.1016/j.jclepro.2023.138551
  2. The future of aviation soars with HTL-based SAFs: exploring potential and overcoming challenges using organic wet feedstocks

    Muhammad Usman, Shuo Cheng, Sasipa Boonyubol, Jeffrey S. Cross. Sustainable Energy & Fuels, 7 (17), 2023. doi: 10.1039/D3SE00427A
  3. Biochar‐based catalysts derived from biomass waste: production, characterization, and application for liquid biofuel synthesis

    Van Nhanh Nguyen, Prabhakar Sharma, Lech Rowinski, Huu Cuong Le, Duc Trong Nguyen Le, Sameh M. Osman, Huu Son Le, Thanh Hai Truong, Phuoc Quy Phong Nguyen, Dao Nam Cao. Biofuels, Bioproducts and Biorefining, 18 (2), 2024. doi: 10.1002/bbb.2593
  4. Evaluating Green Solvents for Bio-Oil Extraction: Advancements, Challenges, and Future Perspectives

    Muhammad Usman, Shuo Cheng, Sasipa Boonyubol, Jeffrey S. Cross. Energies, 16 (15), 2023. doi: 10.3390/en16155852
  5. Recent advances in hydrogen production from biomass waste with a focus on pyrolysis and gasification

    Van Giao Nguyen, Thanh Xuan Nguyen-Thi, Phuoc Quy Phong Nguyen, Viet Dung Tran, Ümit Ağbulut, Lan Huong Nguyen, Dhinesh Balasubramanian, Wieslaw Tarelko, Suhaib A. Bandh, Nguyen Dang Khoa Pham. International Journal of Hydrogen Energy, 54 , 2024. doi: 10.1016/j.ijhydene.2023.05.049

Last update: 2024-12-21 19:17:27

No citation recorded.