skip to main content

Numerical Investigation of Convective Heat Transfer and Fluid Flow Past a Three Square Cylinders Controlled by a Partition in Channel

Laboratory of Mechanics & Energy, Faculty of Sciences, Mohammed 1st University, Oujda, Morocco

Received: 31 Dec 2021; Revised: 24 Apr 2022; Accepted: 10 May 2022; Available online: 25 May 2022; Published: 4 Aug 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This document presents a research article on the control of fluid flow around three heated square cylinders placed side by side in a 2D horizontal channel using a flat plate. The objective of this research is to examine the effect of the position, length and height of a flat plate on fluid flow and heat transfer. For this purpose, numerical simulations are performed by using the Boltzmann double relaxation time multiple network method (DMRT-LBM). The MRT-D2Q9 and MRT-D2Q5 models are used to treat the flow and temperature fields respectively. In contrast to several existing investigations in the literature in this domain which study the passive control of the flow using a horizontal or vertical plate around a single cylinder, this work presents a numerical study on the effect of the position, length and height of a flat plate (horizontal and vertical) on three heated square cylinders on the flow and temperature fields. First, the effect of the position and length of the horizontal flat plate is examined. This study shows that the implementation of a flat plate of length Lp = 4D at a position g=3 behind the central cylinder reduces the amplitude of the Von Karman Street and allows large and regular heat exchange.  Thus, in the second part, the effect of the position and height of the vertical flat plate is studied. The results obtained show that the implementation of a flat plate of height h=2D at a position g=3 behind the central cylinder improves the thermal exchange between the incoming fluid and the heated cylinders. This numerical work could lead to the prediction of the cooling of the electronic components: The cooling of the obstacles is all the better when the control plate is arranged at g = 3 and its height h = 2D in the case of the vertical plate or its length Lp equal to 4D in the case where the plate is implemented horizontally

Fulltext View|Download
Keywords: Partition control; Square cylinders; Heat transfer; Flow field; Multiple Relaxation Time Lattice Boltzmann method

Article Metrics:

  1. Abbasi, W. S., Saha, S. C., Gu, Y. T., & Ying, Z. C. (2014). Effect of Reynolds numbers on flow past four square cylinders in an in-line square configuration for different gap spacings. Journal of Mechanical Science and Technology, 28(2), 539-552. doi: 10.1007/s12206-013-1121-8
  2. Aboueian, J., & Sohankar, A. (2017). Identification of flow regimes around two staggered square cylinders by a numerical study. Theoretical and Computational Fluid Dynamics, 31(3), 295-315. doi: 10.1007/s00162-017-0424-2
  3. Adeeb, E., Haider, B. A., & Sohn, C. H. (2018). Flow interference of two side-by-side square cylinders using IB-LBM–Effect of corner radius. Results in Physics, 10, 256-263.doi: 10.1016/j.rinp.2018.05.039
  4. Admi, Y., Lahmer, E. B., Moussaoui, M. A., & Mezrhab, A. (2021). Numerical study of the drag force reduction and heat transfer characteristics around a heated square cylinder by using three numerical study of the drag force reduction and heat transfer characteristics around a heated square cylinder. Science International, 33(5), 385–389. doi: 10.5281/zenodo.5522390
  5. Admi, Y., Lahmer, E. B., Moussaoui, M. A., & Mezrhab, A. (2022). Effect of a Flat Plate on Drag Force Reduction and Heat Transfer Characteristics Around Three Heated Square Obstacles. Journal of Physics: Conference Series, 2178(1), 012027. doi: 10.1088/1742-6596/2178/1/012027
  6. Admi, Y., Moussaoui, M. A., & Mezrhab, A. (2020). Effect of a flat plate on heat transfer and flow past a three side-by-side square cylinders using double MRT-lattice Boltzmann method. In 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS) (pp. 1-5). IEEE. doi: 10.1109/ICECOCS50124.2020.9314506
  7. Admi, Y., Moussaoui, M. A., & Mezrhab, A. (2021). Effect of Control Partitions on Drag Reduction and Suppression of Vortex Shedding Around a Bluff Body Cylinder. In International Conference on Advanced Technologies for Humanity (pp. 453-463). Springer. Cham. doi: 10.1007/978-3-030-94188-8_40
  8. Admi, Y., Moussaoui, M. A., Mezrhab, A., Bottom, V., & Henry, D. Convective heat transfer past a three side-by-side square cylinders using double MRT-lattice Boltzmann method. sciencesconf.org:cfm2019:244841
  9. Ali, M. S. M., Doolan, C. J., & Wheatley, V. (2012). Low Reynolds number flow over a square cylinder with a detached flat plate. International Journal of Heat and Fluid Flow, 36, 133-141. doi: 10.1016/j.ijheatfluidflow.2012.03.011
  10. Benhamou, J., Admi, Y., Jami, M., Moussaoui, M. A., & Mezrhab, A. (2022, March). 3D Simulation of Natural Convection in a Cubic Cavity with Several Differentially Heated Walls. In 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1-7). IEEE. doi: 10.1109/iraset52964.2022.9738080
  11. Benhamou, J., Jami, M., Mezrhab, A., Botton, V., & Henry, D. (2020). Numerical study of natural convection and acoustic waves using the lattice Boltzmann method. Heat Transfer, 49(6), 3779-3796. doi: 10.1002/htj.21800
  12. Bhatnagar, P. L., Gross, E. P., & Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical review, 94(3), 511.doi: 10.1103/PhysRev.94.511
  13. Bouzidi, M. H., Firdaouss, M., & Lallemand, P. (2001). Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics of fluids, 13(11), 3452-3459. doi: 10.1063/1.1399290
  14. Breuer, M., Bernsdorf, J., Zeiser, T., & Durst, F. (2000). Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume. International journal of heat and fluid flow, 21(2), 186-196. doi: 10.1016/S0142-727X(99)00081-8
  15. Chatterjee, D., & Mondal, B. (2012). Forced convection heat transfer from tandem square cylinders for various spacing ratios. Numerical Heat Transfer, Part A: Applications, 61(5), 381-400. doi: 10.1080/10407782.2012.647985
  16. Chatterjee, D., & Mondal, B. (2013). Mixed convection heat transfer from tandem square cylinders for various gap to size ratios. Numerical Heat Transfer, Part A: Applications, 63(2), 101-119. doi: 10.1080/10407782.2012.725007
  17. Dash, S. M., Triantafyllou, M. S., & Alvarado, P. V. Y. (2020). A numerical study on the enhanced drag reduction and wake regime control of a square cylinder using dual splitter plates. Computers & Fluids, 199, 104421. doi: 10.1016/j.compfluid.2019.104421
  18. Dey, P. (2022). Fluid flow and heat transfer around square cylinder with dual splitter plates arranged at novel positions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(9), 5060-5077. doi: 10.1177/09544062211057832
  19. Dhiman, A. K., Chhabra, R. P., & Eswaran, V. (2005). Flow and heat transfer across a confined square cylinder in the steady flow regime: effect of Peclet number. International Journal of Heat and Mass Transfer, 48(21-22), 4598-4614. doi: 10.1016/j.ijheatmasstransfer.2005.04.033
  20. d'Humières, D. (2002). Multiple–relaxation–time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360(1792), 437-451. doi: 10.1098/rsta.2001.0955
  21. Doolan, C. J. (2009). Flat-plate interaction with the near wake of a square cylinder. AIAA journal, 47(2), 475-479. doi: 10.2514/1.40503
  22. Florides, G., & Kalogirou, S. (2007). Ground heat exchangers—A review of systems, models and applications. Renewable energy, 32(15), 2461-2478. doi: 10.1016/j.renene.2006.12.014
  23. Guo, S., Feng, Y., Jacob, J., Renard, F., & Sagaut, P. (2020). An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice. Journal of Computational Physics, 418, 109570. doi: 10.1016/j.jcp.2020.109570
  24. Han, Z., Zhou, D., & Tu, J. (2013). Laminar flow patterns around three side-by-side arranged circular cylinders using semi-implicit three-step Taylor-characteristic-based-split (3-TCBS) algorithm. Engineering Applications of Computational Fluid Mechanics, 7(1), 1-12. doi: 10.1080/19942060.2013.11015450
  25. Harte, R., & Van Zijl, G. P. (2007). Structural stability of concrete wind turbines and solar chimney towers exposed to dynamic wind action. Journal of Wind engineering and industrial aerodynamics, 95(9-11), 1079-1096. doi: 10.1016/j.jweia.2007.01.028
  26. Islam, S. U., Abbasi, W. S., & Ying, Z. C. (2016). Transitions in the unsteady wakes and aerodynamic characteristics of the flow past three square cylinders aligned inline. Aerospace science and technology, 50, 96-111. Doi: 10.1016/j.ast.2015.12.004
  27. Islam, S. U., Rahman, H., Abbasi, W. S., & Shahina, T. (2015). Lattice Boltzmann study of wake structure and force statistics for various gap spacings between a square cylinder with a detached flat plate. Arabian Journal for Science and Engineering, 40(8), 2169-2182. doi: 10.1007/s13369-015-1648-3
  28. Koutmos, P., Papailiou, D., & Bakrozis, A. (2004). Experimental and computational study of square cylinder wakes with two-dimensional injection into the base flow region. European Journal of Mechanics-B/Fluids, 23(2), 353-365. doi: 10.1016/j.euromechflu.2003.09.004
  29. Kumar, A., Dhiman, A., & Baranyi, L. (2015). CFD analysis of power-law fluid flow and heat transfer around a confined semi-circular cylinder. International Journal of Heat and Mass Transfer, 82, 159-169. doi: 10.1016/j.ijheatmasstransfer.2014.11.046
  30. Kumar, D., & Sen, S. (2021). Flow-induced vibrations of a pair of in-line square cylinders. Physics of Fluids, 33(4), 043602. doi: 10.1063/5.0038714
  31. Lahmer, E. B., Admi, Y., Moussaoui, M. A., & Mezrhab, A. (2022) Improvement of the heat transfer quality by air cooling of three‐heated obstacles in a horizontal channel using the lattice Boltzmann method. Heat Transfer.,1-23; doi: 10.1002/htj.22481
  32. Lahmer, E. B., Benhamou, J., Admi, Y., Moussaoui, M. A., Jami, M., Mezrhab, A., & Phanden, R. K. (2022). Assessment of conjugate and convective heat transfer performance over a partitioned channel within backward-facing step using the lattice boltzmann method. Journal of Enhanced Heat Transfer, 29(3). doi: 10.1615/JEnhHeatTransf.2022040357
  33. Lahmer, E. B., Moussaoui, M. A., & Mezrhab, A. (2019). Investigation of laminar flow and convective heat transfer in a constricted channel based on double MRT-LBM. In 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS) (pp. 1-6). IEEE. doi: 10.1109/WITS.2019.8723820
  34. Lallemand, P., & Luo, L. S. (2000). Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical review E, 61(6), 6546. doi: 10.1103/PhysRevE.61.6546
  35. Malekzadeh, S., & Sohankar, A. (2012). Reduction of fluid forces and heat transfer on a square cylinder in a laminar flow regime using a control plate. International Journal of Heat and Fluid Flow, 34, 15-27. doi: 10.1016/j.ijheatfluidflow.2011.12.008
  36. Manzoor, R., Khalid, A., Khan, I., Baleanu, D., & Nisar, K. S. (2020). Numerical simulation of drag reduction on a square rod detached with two control rods at various gap spacing via lattice Boltzmann method. Symmetry, 12(3), 475. doi: 10.3390/SYM12030475
  37. McNamara, G. R., & Zanetti, G. (1988). Use of the Boltzmann equation to simulate lattice-gas automata. Physical review letters, 61(20), 2332. doi: 10.1103/PhysRevLett.61.2332
  38. Mezrhab, A., Moussaoui, M. A., Jami, M., Naji, H., & Bouzidi, M. H. (2010). Double MRT thermal lattice Boltzmann method for simulating convective flows. Physics Letters A, 374(34), 3499-3507. https://doi.org/10.1016/j.physleta.2010.06.059
  39. Mezrhab, A., Moussaoui, M. A., Jami, M., Naji, H., & Bouzidi, M. H. (2010). Double MRT thermal lattice Boltzmann method for simulating convective flows. Physics Letters A, 374(34), 3499-3507. doi: 10.1016/j.physleta.2010.06.059
  40. Mohamad, A. A. (2011). Lattice Boltzmann Method (Vol. 70). London: Springer. Doi: 10.1007/978-1-4471-7423-3
  41. Monat, J. P., & Gannon, T. F. (2018). Applying systems thinking to engineering and design. Systems, 6(3), 34. doi: 10.3390/systems6030034
  42. Moussaoui, M. A., Admi, Y., Lahmer, E. B., & Mezrhab, A. (2021). Numerical investigation of convective heat transfer in fluid flow past a tandem of triangular and square cylinders in channel. IOP Conference Series: Materials Science and Engineering. doi: 10.1088/1757-899x/1091/1/012058
  43. Moussaoui, M. A., Jami, M., Mezrhab, A., & Naji, H. (2009). Convective heat transfer over two blocks arbitrary located in a 2D plane channel using a hybrid lattice Boltzmann-finite difference method. Heat and mass transfer, 45(11), 1373-1381. doi: 10.1007/s00231-009-0514-9
  44. Moussaoui, M. A., Jami, M., Mezrhab, A., & Naji, H. (2010). MRT-Lattice Boltzmann simulation of forced convection in a plane channel with an inclined square cylinder. International Journal of Thermal Sciences, 49(1), 131-142. doi: 10.1016/j.ijthermalsci.2009.06.009
  45. Moussaoui, M. A., Jami, M., Mezrhab, A., Naji, H., & Bouzidi, M. (2010). Multiple‐relaxation‐time lattice Boltzmann computation of channel flow past a square cylinder with an upstream control bi‐partition. International journal for numerical methods in fluids, 64(6), 591-608. doi: 10.1002/fld.2159
  46. Moussaoui, M. A., Lahmer, E. B., Admi, Y., & Mezrhab, A. (2019, April). Natural convection heat transfer in a square enclosure with an inside hot block. In 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS) (pp. 1-6). IEEE. doi: 10.1109/WITS.2019.8723863
  47. Moussaoui, M. A., Mezrhab, A., & Naji, H. (2011). A computation of flow and heat transfer past three heated cylinders in a vee shape by a double distribution MRT thermal lattice Boltzmann model. International journal of thermal sciences, 50(8), 1532-1542. doi: 10.1016/j.ijthermalsci.2011.03.011
  48. Nazeer, G., Shams-ul-Islam, Shigri, S. H., & Saeed, S. (2019). Numerical investigation of different flow regimes for multiple staggered rows. AIP Advances, 9(3), 035247. doi: 10.1063/1.5091668
  49. Nguyen, V. L., Nguyen-Thoi, T., & Duong, V. D. (2021). Characteristics of the flow around four cylinders of various shapes. Ocean Engineering, 238, 109690. doi: 10.1016/j.oceaneng.2021.109690
  50. Rabiee, A. H., Barzan, M. R., & Mohammadebrahim, A. (2021). Flow-induced vibration suppression of elastic square cylinder using windward-suction-leeward-blowing approach. Applied Ocean Research, 109, 102552. doi: 10.1016/j.apor.2021.102552
  51. Rahim, K. Z., Ahmed, J., Nag, P., & Molla, M. M. (2020). Lattice Boltzmann simulation of natural convection and heat transfer from multiple heated blocks. Heat Transfer, 49(4), 1877-1894. doi: 10.1002/htj.21698
  52. Rashidi, S., Dehghan, M., Ellahi, R., Riaz, M., & Jamal-Abad, M. T. (2015). Study of stream wise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium. Journal of Magnetism and Magnetic Materials, 378, 128-137. doi: 10.1016/j.jmmm.2014.11.020
  53. Rashidi, S., Hayatdavoodi, M., & Esfahani, J. A. (2016). Vortex shedding suppression and wake control: A review. Ocean Engineering, 126, 57-80. doi: 10.1016/j.oceaneng.2016.08.031
  54. Shamsoddini, R., Sefid, M., & Fatehi, R. (2014). ISPH modelling and analysis of fluid mixing in a microchannel with an oscillating or a rotating stirrer. Engineering Applications of Computational Fluid Mechanics, 8(2), 289-298. doi: 10.1080/19942060.2014.11015514
  55. Sohankar, A., & Najafi, M. (2018). Control of vortex shedding, forces and heat transfer from a square cylinder at incidence by suction and blowing. International Journal of Thermal Sciences, 129, 266-279. doi: 10.1016/j.ijthermalsci.2018.03.014
  56. Sumner, D. (2010). Two circular cylinders in cross-flow: a review. Journal of fluids and structures, 26(6), 849-899. doi: 10.1016/j.jfluidstructs.2010.07.001
  57. Tamimi, V., Naeeni, S. T. O., & Zeinoddini, M. (2017). Flow induced vibrations of a sharp edge square cylinder in the wake of a circular cylinder. Applied Ocean Research, 66, 117-130. doi: 10.1016/j.apor.2017.05.011
  58. Tong, F., Cheng, L., Zhao, M., & An, H. (2015). Oscillatory flow regimes around four cylinders in a square arrangement under small and conditions. Journal of Fluid Mechanics, 769, 298-336. doi: 10.1017/jfm.2015.107
  59. Turki, S. (2008). Numerical simulation of passive control on vortex shedding behind square cylinder using splitter plate. Engineering Applications of Computational Fluid Mechanics, 2(4), 514-524. doi: 10.1080/19942060.2008.11015248
  60. Vamsee, G. R., De Tena, M. L., & Tiwari, S. (2014). Effect of arrangement of inline splitter plate on flow past square cylinder. Progress in Computational Fluid Dynamics, an International Journal, 14(5), 277-294. doi: 10.1504/PCFD.2014.064554
  61. Wu, H. W., Perng, S. W., Huang, S. Y., & Jue, T. C. (2006). Transient mixed convective heat transfer predictions around three heated cylinders in a horizontal channel. International Journal of Numerical Methods for Heat & Fluid Flow. 16(6), 674-692; doi: 10.1108/09615530610679057
  62. Yang, Z., Ding, L., Zhang, L., Yang, L., & He, H. (2020). Two degrees of freedom flow-induced vibration and heat transfer of an isothermal cylinder. International Journal of Heat and Mass Transfer, 154, 119766. doi: 10.1016/j.ijheatmasstransfer.2020.119766
  63. Zhou, L., Cheng, M., & Hung, K. C. (2005). Suppression of fluid force on a square cylinder by flow control. Journal of Fluids and Structures, 21(2), 151-167. doi: 10.1016/j.jfluidstructs.2005.07.002
  64. Zou, Q., & He, X. (1997). On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of fluids, 9(6), 1591-1598. doi: 10.1063/1.869307

Last update:

No citation recorded.

Last update:

No citation recorded.