skip to main content

Numerical Investigation of Solidity Effect Based on Variable Diameter on Power Performance of H-type Darrieus Vertical Axis Wind Turbine (VAWT)

1Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia

Received: 27 Jan 2022; Revised: 5 Apr 2022; Accepted: 10 Apr 2022; Available online: 25 Apr 2022; Published: 4 Aug 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Renewable energy resources especially wind energy, have seen significant growth in the worldwide energy market as clean energy sources. This has brought attention to areas with low and moderate wind speeds. Small-scale Darrieus vertical axis wind turbine (VAWT) with omnidirectional capability captures potential energy in these areas at a cost-effective scale. Numerous studies have been conducted to optimise their design, hence improving the performance of these turbines. Turbine solidity, σ, representing the ratio of the overall area of the blades over the swept area of the turbine, is one of the influential geometrical factors that significantly affect wind turbine performance. Previous studies on solidity focused on the number of blades and blade length variations, while the study on turbine diameter is limited. Hence, this paper intends to numerically investigate the effect of solidity that corresponds to different turbine diameters. Power performance and flow characteristics are investigated closely according to different solidity, σ and tip speed ratios, λ using high-fidelity computational fluid dynamic (CFD) method, which solves the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations. Solidity and tip speed ratios vary within a wide range of 0.3 – 0.7 and 0.5 – 4.5, respectively. The results show that decreasing the turbine solidity from 0.7 to 0.3 could significantly increase the maximum power coefficient, Cp, by 30%. However, turbine with high solidity (σ = 0.7) generate much higher instantaneous moment coefficient, Cm than the low solidity turbine (σ = 0.3), but at lower λ and a narrower range of λ. The difference in turbine's performance between high and low solidity turbine is attributed to stall experienced by the blade at low λ and the blockage effect experienced by the turbine at moderate to high λ that significantly influence the energy generation at downstream region
Fulltext View|Download
Keywords: Solidity; computational fluid dynamic; H-type Darrieus; vertical axis wind turbine; wind energy
Funding: FRGS/1/2019/TK03/UKM/02/6

Article Metrics:

  1. Amponsah, N. Y., Troldborg, M., Kington, B., Aalders, I. & Hough, R. L. (2014). Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations. Renewable and Sustainable Energy Reviews 39461–475; doi: https://doi.org/10.1016/j.rser.2014.07.087
  2. Arab, A., Javadi, M., Anbarsooz, M. & Moghiman, M. (2017). A numerical study on the aerodynamic performance and the self-starting characteristics of a Darrieus wind turbine considering its moment of inertia. Renewable Energy 107298–311; doi: 10.1016/j.renene.2017.02.013
  3. Arpino, F., Scungio, M. & Cortellessa, G. (2018). Numerical performance assessment of an innovative Darrieus-style vertical axis wind turbine with auxiliary straight blades. Energy Conversion and Management 171769–777; doi: https://doi.org/10.1016/j.enconman.2018.06.028
  4. Bangga, G. (2019). Numerical studies on dynamic stall characteristics of a wind turbine airfoil. Journal of Mechanical Science and Technology 33(3), 1257–1262; doi: 10.1007/s12206-019-0225-1
  5. Bel Mabrouk, I. & El Hami, A. (2019). Effect of number of blades on the dynamic behavior of a Darrieus turbine geared transmission system. Mechanical Systems and Signal Processing 121562–578; doi: https://doi.org/10.1016/j.ymssp.2018.11.048
  6. Bianchini, A., Balduzzi, F., Ferrara, G., Persico, G., Dossena, V. & Ferrari, L. (2018). A Critical Analysis on Low-Order Simulation Models for Darrieus Vawts: How Much Do They Pertain to the Real Flow? Journal of Engineering for Gas Turbines and Power 141(1), doi: 10.1115/1.4040851
  7. Bilgili, M., Tumse, S., Tontu, M. & Sahin, B. (2021). Effect of Growth in Turbine Size on Rotor Aerodynamic Performance of Modern Commercial Large-Scale Wind Turbines. Arabian Journal for Science and Engineering 46(8), 7185–7195; doi: 10.1007/s13369-021-05364-6
  8. Chen, J., Yang, H., Yang, M. & Xu, H. (2015). The effect of the opening ratio and location on the performance of a novel vertical axis Darrieus turbine. Energy 89819–834; doi: 10.1016/j.energy.2015.05.136
  9. Chen, W.-H., Chen, C.-Y., Huang, C.-Y. & Hwang, C.-J. (2017). Power output analysis and optimisation of two straight-bladed vertical-axis wind turbines. Applied Energy 185223–232; doi: https://doi.org/10.1016/j.apenergy.2016.10.076
  10. Chong, W.-T., Muzammil, W. K., Ong, H.-C., Sopian, K., Gwani, M., Fazlizan, A. & Poh, S.-C. (2019). Performance analysis of the deflector integrated cross axis wind turbine. Renewable Energy 138675–690; Retrieved from https://www.sciencedirect.com/science/article/pii/S0960148119301491?dgcid=author
  11. Chong, W. T., Poh, S. C., Fazlizan, A., Yip, S. Y., Koay, M. H. & Hew, W. P. (2013). Exhaust air energy recovery system for electrical power generation in future green cities. International Journal of Precision Engineering and Manufacturing doi: 10.1007/s12541-013-0138-3
  12. Danao, L. A., Edwards, J., Eboibi, O. & Howell, R. (2014). A numerical investigation into the influence of unsteady wind on the performance and aerodynamics of a vertical axis wind turbine. Applied Energy 116111–124; doi: 10.1016/j.apenergy.2013.11.045
  13. Daróczy, L., Janiga, G. & Thévenin, D. (2018). Computational fluid dynamics based shape optimisation of airfoil geometry for an H-rotor using a genetic algorithm. Engineering Optimization 50(9), 1483–1499; doi: 10.1080/0305215X.2017.1409350
  14. Eboibi, O., Danao, L. A. M. & Howell, R. J. (2016). Experimental investigation of the influence of solidity on the performance and flow field aerodynamics of vertical axis wind turbines at low Reynolds numbers. Renewable Energy 92474–483; doi: https://doi.org/10.1016/j.renene.2016.02.028
  15. Fazlizan, A., Muzammil, W. K., Ismail, M. A., Ramlee, M. F. & Ibrahim, A. (2019). Skewed wind flows energy exploitation in built environment. Alam Cipta 12(SI 1), 53–60; Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073147419&partnerID=40&md5=4c2cc37b8d023eaf50ccca66bdf8cea5
  16. Joo, S., Choi, H. & Lee, J. (2015). Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds. Energy 90439–451; doi: 10.1016/j.energy.2015.07.051
  17. Kamani, O. & Kamali, R. (2021). Performance and Aeroacoustic Noise Prediction for an Array of Small-Scale Vertical Axis Wind Turbines. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering 45(1), doi: 10.1007/s40997-020-00385-2
  18. Langtry, R. B., Menter, F. R., Likki, S. R., Suzen, Y. B., Huang, P. G. & Volker, S. (2006). A Correlation-Based Transition Model Using Local Variables---Part II: Test Cases and Industrial Applications. Journal of Turbomachinery 128(3), 423–434;
  19. Lanzafame, R., Mauro, S. & Messina, M. (2013). Wind turbine CFD modeling using a correlation-based transitional model. Renewable Energy 5231–39; doi: 10.1016/j.renene.2012.10.007
  20. Li, C., Xiao, Y., Xu, Y. lin, Peng, Y. xin, Hu, G. & Zhu, S. (2018). Optimisation of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations. Applied Energy 2121107–1125; doi: 10.1016/j.apenergy.2017.12.035
  21. Li, Qing’an, Maeda, T., Kamada, Y., Murata, J., Shimizu, K., Ogasawara, T., Nakai, A., et al. (2016). Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades). Renewable Energy 96928–939; doi: https://doi.org/10.1016/j.renene.2016.05.054
  22. Li, Qing’an, Maeda, T., Kamada, Y., Shimizu, K., Ogasawara, T., Nakai, A. & Kasuya, T. (2017). Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method. Energy 1211–9; doi: https://doi.org/10.1016/j.energy.2016.12.112
  23. Mantravadi, B., D., U., Sriram, K., Mohammad, A., Vaitla, L. & Velamati, R. K. (2019). Effect of solidity and airfoil on the performance of vertical axis wind turbine under fluctuating wind conditions. International Journal of Green Energy 16(14), 1329–1342; doi: 10.1080/15435075.2019.1671408
  24. Meana-Fernández, A., Solís-Gallego, I., Fernández Oro, J. M., Argüelles Díaz, K. M. & Velarde-Suárez, S. (2018). Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs. Energy 147504–517; doi: 10.1016/j.energy.2018.01.062
  25. Menter, F. R., Langtry, R., Völker, S. & Huang, P. G. (2005). Transition Modelling for General Purpose CFD Codes. Engineering Turbulence Modelling and Experiments 6 31–48; doi: 10.1016/B978-008044544-1/50003-0
  26. Nguyen, M. T., Balduzzi, F., Bianchini, A., Ferrara, G. & Goude, A. (2020). Evaluation of the unsteady aerodynamic forces acting on a vertical-axis turbine by means of numerical simulations and open site experiments. Journal of Wind Engineering and Industrial Aerodynamics 198104093; doi: https://doi.org/10.1016/j.jweia.2020.104093
  27. Onol, A. O. & Yesilyurt, S. (2017). Effects of wind gusts on a vertical axis wind turbine with high solidity. Journal of Wind Engineering and Industrial Aerodynamics 162(June 2016), 1–11; doi: 10.1016/j.jweia.2017.01.003
  28. Peng, Y.-X., Xu, Y.-L., Zhan, S. & Shum, K.-M. (2019). High-solidity straight-bladed vertical axis wind turbine: Aerodynamic force measurements. Journal of Wind Engineering and Industrial Aerodynamics 18434–48; doi: https://doi.org/10.1016/j.jweia.2018.11.005
  29. Qamar, S. B. & Janajreh, I. (2017). A comprehensive analysis of solidity for cambered darrieus VAWTs. International Journal of Hydrogen Energy 42(30), 19420–19431; doi: https://doi.org/10.1016/j.ijhydene.2017.06.041
  30. Raciti Castelli, M., Englaro, A., Benini, E., Castelli, M. R., Englaro, A. & Benini, E. (2011). The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy 36(8), 4919–4934; doi: 10.1016/j.energy.2011.05.036
  31. Rezaeiha, A., Kalkman, I. & Blocken, B. (2017)a. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renewable Energy 107373–385; doi: 10.1016/j.renene.2017.02.006
  32. Rezaeiha, A., Kalkman, I. & Blocken, B. (2017)b. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Applied Energy 197132–150; doi: 10.1016/j.apenergy.2017.03.128
  33. Rezaeiha, A., Montazeri, H. & Blocken, B. (2018)a. Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades. Energy 1651129–1148; doi: https://doi.org/10.1016/j.energy.2018.09.192
  34. Rezaeiha, A., Montazeri, H. & Blocken, B. (2018)b. Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy Conversion and Management 156301–316; doi: 10.1016/j.enconman.2017.11.026
  35. Rezaeiha, A., Montazeri, H. & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy 180838–857; doi: 10.1016/j.energy.2019.05.053
  36. Rocha, P. A. C., Rocha, H. H. B., Carneiro, F. O. M., da Silva, M. E. V. & de Andrade, C. F. (2016). A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils. Energy 97144–150; doi: https://doi.org/10.1016/j.energy.2015.12.081
  37. Sagharichi, A., Zamani, M. & Ghasemi, A. (2018). Effect of solidity on the performance of variable-pitch vertical axis wind turbine. Energy 161753–775; doi: https://doi.org/10.1016/j.energy.2018.07.160
  38. Singh, M. A., Biswas, A. & Misra, R. D. (2015). Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor. Renewable Energy 76381–387; doi: 10.1016/j.renene.2014.11.027
  39. Sobhani, E., Ghaffari, M. & Maghrebi, M. J. (2017). Numerical investigation of dimple effects on darrieus vertical axis wind turbine. Energy 133231–241; doi: 10.1016/j.energy.2017.05.105
  40. Subramanian, A., Yogesh, S. A., Sivanandan, H., Giri, A., Vasudevan, M., Mugundhan, V. & Velamati, R. K. (2017). Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy 133179–190; doi: https://doi.org/10.1016/j.energy.2017.05.118
  41. Vergaerde, A., De Troyer, T., Carbó Molina, A., Standaert, L. & Runacres, M. C. (2019). Design, manufacturing and validation of a vertical-axis wind turbine setup for wind tunnel tests. Journal of Wind Engineering and Industrial Aerodynamics 193103949; doi: https://doi.org/10.1016/j.jweia.2019.103949
  42. Wang, Z. & Zhuang, M. (2017). Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios. Applied Energy 2081184–1197; doi: 10.1016/j.apenergy.2017.09.034

Last update:

No citation recorded.

Last update:

No citation recorded.